With the characteristic of high recognition rate and strong network robustness, convolutional neural network has now become the most mainstream method in the field of crop disease recognition. Aiming at the problems with insufficient numbers of labeled samples, complex backgrounds of sample images, and difficult extraction of useful feature information, a novel algorithm is proposed in this study based on attention mechanisms and convolutional neural networks for cassava leaf recognition. Specifically, a combined data augmentation strategy for datasets is used to prevent single distribution of image datasets, and then the PDRNet (plant disease recognition network) combining channel attention mechanism and spatial attention mechanism is proposed.
View Article and Find Full Text PDF