By utilizing first principles calculations, p-type transition in graphene-like zinc oxide (g-ZnO) through elemental doping was achieved, and the influence of different doping strategies on the electronic structure, energy band structure, and optoelectronic properties of g-ZnO was investigated. This research study delves into the effects of strategies such as single-acceptor doping, double-acceptor co-doping, and donor-acceptor co-doping on the properties of g-ZnO. This study found that single-acceptor doping with Li and Ag elements can form shallow acceptor levels, thereby facilitating p-type conductivity.
View Article and Find Full Text PDFAs mining technology advances, intelligent robots in open-pit mining require precise localization and digital maps. Nonetheless, significant pitch variations, uneven highways, and rocky surfaces with minimal texture present substantial challenges to the precision of feature extraction and positioning in traditional visual SLAM systems, owing to the intricate terrain features of open-pit mines. This study proposes an improved SLAM technique that integrates visual and Inertial Measurement Unit (IMU) data to address these challenges.
View Article and Find Full Text PDFIn recent years, gel-electrolyte becomes pivotal in preventing hydrogen evolution, reducing dendrite growth, and protecting the zinc metal anode for zinc-ion batteries. Herein, a polyvinyl alcohol-based water-organic hybrid gel electrolyte with Agar and dimethyl sulfoxide is designed to construct the spontaneous desaturation of the solvation sheath for reducing hydrogen evolution and dendrite growth at room temperature and even low temperature. According to experimental characterization and theoretical calculations, the well binding between multihydroxy polymer and H O is achieved in the hybrid desaturated gel-electrolyte to regulate the inner and outer sheath.
View Article and Find Full Text PDF