Publications by authors named "Yuana Y"

Bone is a complex organ maintained by three main cell types: osteoblasts, osteoclasts, and osteocytes. During bone formation, osteoblasts deposit a mineralized organic matrix. Evidence shows that bone cells release extracellular vesicles (EVs): nano-sized bilayer vesicles, which are involved in intercellular communication by delivering their cargoes through protein-ligand interactions or fusion to the plasma membrane of the recipient cell.

View Article and Find Full Text PDF

Extracellular vesicles (EVs)-carrying biomolecules derived from parental cells have achieved substantial scientific interest for their potential use as drug nanocarriers. Ultrasound (US) in combination with microbubbles (MB) have been shown to trigger the release of EVs from cancer cells. In the current study, the use of microbubbles-assisted ultrasound (USMB) to generate EVs containing drug cargo was investigated.

View Article and Find Full Text PDF

Previously, we identified plasma microRNA (miR) profiles that associate with markers of microvascular injury in patients with diabetic nephropathy (DN). However, miRs circulate in extracellular vesicles (EVs) or in association with HDL or the RNA-binding protein argonaute-2 (Ago-2). Given that the EV- and HDL-mediated miR transfer toward endothelial cells (ECs) regulates cellular quiescence and inflammation, we hypothesized that the distribution of miRs among carriers affects microvascular homeostasis in DN.

View Article and Find Full Text PDF
Article Synopsis
  • There's been a lot of new research on tiny structures called extracellular vesicles (EVs) that cells release, which help us understand how cells work and what goes wrong in diseases.
  • Scientists have had a hard time studying these EVs because they come in different types and can be tough to separate and analyze properly.
  • The International Society for Extracellular Vesicles updated their guidelines, called MISEV2018, to help researchers share clear information about how to study EVs and ensure their findings are accurate and reliable.
View Article and Find Full Text PDF

Transmission electron microscopy (TEM) and transmission scanning electron Microscopy (TSEM), which denotes application of a scanning electron microscope (SEM) in the transmission mode, have been used to detect and characterize particles down to an imaging resolution of ~1 nm. In the field of EVs, TEM also has been valued for its capability to detect and characterize single EV. Furthermore, employing immunogold labeling in TEM could give information regarding biochemical properties of EV surface proteins.

View Article and Find Full Text PDF

Microbubbles-assisted ultrasound (USMB) has shown promise in improving local drug delivery. The formation of transient membrane pores and endocytosis are reported to be enhanced by USMB, and they contribute to cellular drug uptake. Exocytosis also seems to be linked to endocytosis upon USMB treatment.

View Article and Find Full Text PDF

Colonic epithelial health is implicated in a host of gastrointestinal (GI) diseases and disorders. Lysozyme is suspected to play a role in the ability of the epithelium to recover from injury (Abey et al., in press; Gallo, 2012; Rubio, 2014) [1], [2], [3].

View Article and Find Full Text PDF

Background: Stress has demonstrated effects on inflammation though underlying cell-cell communication mechanisms remain unclear. We hypothesize that circulating RNAs and extracellular vesicles (EVs) in patients with chronic stress contain signals with functional roles in cell repair.

Methods: Blood transcriptome from patients with Irritable Bowel Syndrome versus controls were compared to identify signaling pathways and effectors.

View Article and Find Full Text PDF
Article Synopsis
  • Platelets are involved in various key bodily functions like blood clotting, immune response, and even cancer development.
  • Platelet-derived extracellular vesicles (PDEVs) are gaining attention as important mediators and potential biomarkers due to their numerous roles in these processes.
  • The chapter discusses methods for isolating PDEVs from blood or activated platelets and clarifies that PDEVs refer to vesicles from both platelets and their precursor cells, megakaryocytes.
View Article and Find Full Text PDF

Extracellular vesicles (EVs) mediate normal physiological homeostasis and pathological processes by facilitating intercellular communication. Research of EVs in basic science and clinical settings requires both methodological standardization and development of reference materials (RM). Here, we show insights and results of biological RM development for EV studies.

View Article and Find Full Text PDF

Because procedures of handling and storage of body fluids affect numbers and composition of extracellular vesicles (EVs), standardization is important to ensure reliable and comparable measurements of EVs in a clinical environment. We aimed to develop standard protocols for handling and storage of human body fluids for EV analysis. Conditions such as centrifugation, single freeze-thaw cycle, effect of time delay between blood collection and plasma preparation and storage were investigated.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) facilitate intercellular communication by carrying bioactive molecules such as proteins, messenger RNA, and micro (mi)RNAs. Recently, high-density lipoproteins (HDL) isolated from human plasma were also reported to transport miRNA to other cells. HDL, when isolated from human plasma, ranges in density between 1.

View Article and Find Full Text PDF

Background: Extracellular vesicles (EVs) have clinical importance due to their roles in a wide range of biological processes. The detection and characterization of EVs are challenging because of their small size, low refractive index, and heterogeneity.

Methods: In this manuscript, the size distribution of an erythrocyte-derived EV sample is determined using state-of-the-art techniques such as nanoparticle tracking analysis, resistive pulse sensing, and electron microscopy, and novel techniques in the field, such as small-angle X-ray scattering (SAXS) and size exclusion chromatography coupled with dynamic light scattering detection.

View Article and Find Full Text PDF

Introduction: Extracellular vesicles (EV) are phospholipid bilayer-enclosed vesicles recognized as new mediators in intercellular communication and potential biomarkers of disease. They are found in many body fluids and mainly studied in fractions isolated from blood plasma in view of their potential in medicine. Due to the limitations of available analytical methods, morphological information on EV in fresh plasma is still rather limited.

View Article and Find Full Text PDF

Body fluids contain surprising numbers of cell-derived vesicles which are now thought to contribute to both physiology and pathology. Tools to improve the detection of vesicles are being developed and clinical applications using vesicles for diagnosis, prognosis, and therapy are under investigation. The increased understanding why cells release vesicles, how vesicles play a role in intercellular communication, and how vesicles may concurrently contribute to cellular homeostasis and host defense, reveals a very complex and sophisticated contribution of vesicles to health and disease.

View Article and Find Full Text PDF

Microparticles, also known as microvesicles, found in blood plasma, urine, and most other body fluids, may serve as valuable biomarkers of diseases such as cardiovascular diseases, systemic inflammatory disease, thrombosis, and cancer. Unfortunately, the detection and quantification of microparticles are hampered by the microscopic size of these particles and their relatively low abundance in blood plasma. The use of a combination of microfluidics and atomic force microscopy to detect microparticles in blood plasma circumvents both problems.

View Article and Find Full Text PDF

Increased microparticle tissue factor (TF) activity is not only found in cancer patients, but also in patients with cardiovascular and inflammatory diseases. Methods such as flow cytometry and impedance-based flow cytometry allow the analysis of microparticle subsets but provide no insight on which microparticles carry active TF. Conversely, the microparticle-TF activity itself does not reveal the cellular origin of the microparticles carrying the active TF.

View Article and Find Full Text PDF

Results of plasma microparticles (MPs) measurements reported in the literature vary widely. This is clearly not only related to the lack of well-standardised MP assays, but also to variations in pre-analytical conditions. In this review we will discuss the pre-analytical variables related to plasma and MP preparation which may affect MP analysis.

View Article and Find Full Text PDF

Multiple myeloma (MM) is associated with an increased risk of venous thromboembolic (VTE) complications. Aim of this study was to measure microparticle-associated tissue factor (MP-TF) activity in patients with newly diagnosed MM before and after chemotherapy and to investigate whether MP-TF activity is associated with VTE. MP-TF activity was assessed in 122 newly diagnosed MM patients who were eligible for combination chemotherapy.

View Article and Find Full Text PDF

Background: Microparticles (MPs) are small vesicles released from cells of different origin, bearing surface antigens from parental cells. Elevated numbers of blood MPs have been reported in (cardio)vascular disorders and cancer. Most of these MPs are derived from platelets.

View Article and Find Full Text PDF

Circulating cells of several lineages are thought to participate in angiogenesis and tumor growth. Experimental studies in tumor-bearing mice have pointed to the potential importance of VEGF-responding circulating (endothelial) progenitor cells in tumor growth. We have studied circulating CD31- and/or CD34-positive cell populations with a low to moderate VEGFR2 expression in human volunteers and cancer patients.

View Article and Find Full Text PDF

CD13/Aminopeptidase N (CD13) is known to play an important role in tumour cell invasion. We examined whether basic fibroblast growth factor (bFGF) is involved in the regulation of CD13 expression in human melanoma cells. 1F6 human melanoma cells were stably transfected with constructs encoding either the 18 kDa (18 kD) or all (ALL) bFGF isoform proteins.

View Article and Find Full Text PDF

Background: Endostatin is an endogenous collagen XVIII-fragment with anti-angiogenic properties and remarkable antitumor activity in mice. Preclinical data suggest that continuous low dose administration of endostatin is much more potent than intermittent dosing. The feasibility of this approach is tested in a phase I study.

View Article and Find Full Text PDF