Publications by authors named "YuanAn Liu"

Compared to traditional neural networks, optical neural networks demonstrate significant advantages in terms of information processing speed, energy efficiency, anti-interference capability, and scalability. Despite the rapid development of optical neural networks in recent years, most existing systems still face challenges such as complex structures, time-consuming training, and insufficient accuracy. This study fully leverages the coherence of optical systems and introduces an optical Fourier convolutional neural network based on the diffraction of complex image light fields.

View Article and Find Full Text PDF

The pH and O are the two important parameters to evaluate environmental conditions, healthcare, and industrial processes. Herein, we developed a ratiometric fluorescent capillary-based dual-functional sensor for simultaneous monitoring of pH and O fluctuations. The fluorescent sensor consists of a pH sensing unit and an O sensing unit on both ends of the capillary inner wall.

View Article and Find Full Text PDF

With the fast development of unmanned aerial vehicles (UAVs) and the user increasing demand of UAV video transmission, UAV video service is widely used in dynamic searching and reconnoitering applications. Video transmissions not only consider the complexity and instability of 3D UAV network topology but also ensure reliable quality of service (QoS) in flying ad hoc networks (FANETs). We propose hedge transfer learning routing (HTLR) for dynamic searching and reconnoitering applications to address this problem.

View Article and Find Full Text PDF

The digital optical fiber repeater (DOFR) is an important infrastructure in the LTE networks, which solve the problem of poor regional signal quality. Various types of conventional measurement data from the LTE network cannot indicate whether a working DOFR is present in the cell. Currently, the detection of DOFRs relies solely on maintenance engineers for field detection.

View Article and Find Full Text PDF

Free-standing Cu/CuO/CuO modified by graphene was formed through two steps: Firstly, the commercial Cu foil was thermal annealed to form Cu/CuO/CuO; Secondly, the Cu/CuO/CuO was modified by graphene through electrochemical exfoliated method. The SEM, XRD, TEM and XPS have been used to characterize the morphology, the crystalline phase, and the surface composition of the hybrid electrode as-prepared. The effects of Cu and its oxides on graphene has been uncovered by the Raman results.

View Article and Find Full Text PDF

Herein, we report a two-photon ratiometric fluorescent pH nanosensor based on conjugated polymer poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO) nanoparticles loaded with pH-sensitive fluorescein isothiocyanate (FITC) for intracellular pH monitoring. The obtained nanosensor (FITC-PFO NPs) possesses high sensitivity, excellent stability, good reversibility, favorable two-photon excitability and low cytotoxicity. The ratiometric fluorescence of FITC and PFO (F/F) in FITC-PFO NPs solution shows an efficient pH-sensitive response over the pH range from 3 to 10 (pKa = 6.

View Article and Find Full Text PDF

A dual-functional nanosysterm is developed by means of Chlorin e6 (Ce6) as photosensitizer and 1,3-Diphenylisobenzofuran (DPBF) as fluorescent singlet oxygen (O) probe. Under 660 nm laser irradiation, Ce6 exhibites efficient O generation, and subsequently the production of O is assessed by the ratiometric fluorescence of PFO and DPBF under one-photon and two-photon excitation mode. The nanoparticles with excellent biocompatibility can be internalized into Hela cells and applied for tumor treatment.

View Article and Find Full Text PDF

Recent experiments have tuned the monolayer 1T^{'}-WTe_{2} to be superconducting by electrostatic gating. Here, we theoretically study the phonon-mediated superconductivity in monolayer 1T^{'}-WTe_{2} via charge doping. We reveal that the emergence of soft-mode phonons with specific momentum is crucial to give rise to the superconductivity in the electron-doping regime, whereas no such soft-mode phonons and no superconductivity emerge in the hole-doping regime.

View Article and Find Full Text PDF

This paper introduces a benchmark dataset to the research article entitled "Ensemble framework by using nature inspired algorithms for the early-stage forest fire rescue - a case study of dynamic optimization problems", by Zhang et al. [7]. Rescue ensemble that consists of rescue simulator and rescue algorithm is characterized by supporting the dynamic simulation of forest fire rescue.

View Article and Find Full Text PDF

Photothermal therapy following microscopic temperature detection can avoid overheating effects or insufficient heating, and thus improve therapeutic efficacy. In this study, biocompatible dual-functional nanoparticles (NPs) are constructed from polypyrrole (PPy) and rhodamine B (RB) by a one-step modified polymerization method. The polypyrrole serves as a photothemal agent, and rhodamine B acts as a temperature-sensing probe.

View Article and Find Full Text PDF

A hybrid material of graphene and porous Ni with highly active Ni(OH) was formed through a one-step electrochemical exfoliation assisted method. The porous Ni with a pore size of 2-10 micrometers obtained by a hydrogen bubble template method was used as the cathode while the graphite foil was used as the anode with only (NH)SO as the electrolyte. Both the high surface areas of porous Ni and the oxygen radicals in graphene favored the formation of the Ni(OH).

View Article and Find Full Text PDF

Conjugated polymer hybrid nanoparticles (NPs) loaded with both indocyanine green (ICG) and 1,3-diphenylisobenzofuran (DPBF) are described. The NPs are dually functional in that ICG acts as the photosensitizer, and DPBF as a probe for singlet oxygen (O probe). The nanoparticle core consists of the energy donating host poly(9,9-dioctylfluorenyl-2,7-diyl)-co-(2,5-p-xylene) (PFP).

View Article and Find Full Text PDF

A novel scheme for the generation and stabilization of the millimeter-wave (mmW) signal employing a frequency-demultiplication optoelectronic oscillator (FD-OEO) has been theoretically analyzed and experimentally demonstrated. The FD-OEO can keep sustaining without optical first-order sidebands, which would help to simplify the photonic-assisted frequency multiplication process and provide a wide frequency compensation range for the mmW system simultaneously. The stability of the generated 40-GHz mmW signal reaches 1.

View Article and Find Full Text PDF

Ratiometric fluorescent nanoparticles (NPs) under two-photon excitation are successfully developed for sensing dissolved oxygen. The NPs comprise the oxygen probe Pt(II)-porphyrins (PtTFPP) and fluorescent organic semiconducting polymer (PFO). PFO polymer acts as both a two-photon antenna and a reference dye, while PtTFPP absorbs the photonic energy transferred by the PFO under two-photon excitation at 740 nm to sense oxygen.

View Article and Find Full Text PDF

An optically-controlled phase-tunable microwave mixer based on a dual-drive dual-parallel Mach-Zehnder modulator (DDDP-MZM) is proposed, which supports wideband phase shift and immunity to power fading caused by chromatic dispersion. By using carrier-suppressed single side-band (CS-SSB) modulation for the local oscillator (LO) signal and carrier-suppressed double side-band (CS-DSB) modulation for the input signal, no vector superposition for the same output microwave frequency occurs, making the system immune from power fading caused by chromatic dispersion. Phase tuning is achieved by shifting the phase of the LO signal, and direct electrical tuning of the wideband microwave input signal is avoided, thus supporting large working bandwidth.

View Article and Find Full Text PDF

The coupled optoelectronic oscillator (COEO) is typically used to generate high frequency spectrally pure microwave signal with serious sidemodes noise. We propose and experimentally demonstrate a simple scheme for supermode suppression with mutual injection locking between the COEO (master oscillator with multi-modes oscillation) and the embedded free-running oscillator (slave oscillator with single-mode oscillation). The master and slave oscillators share the same electrical feedback path, which means that the mutually injection-locked COEO brings no additional hardware complexity.

View Article and Find Full Text PDF

In this paper, a novel perturbation approach for implementing the independently reconfigurable dual-mode dual-band substrate integrated waveguide (SIW) filter is proposed. Dual-frequency manipulation is achieved by adding perturbation via-holes (the first variable) and changing the lengths of the interference slot (the second variable) in each cavity. The independent control of the upper passband only depends on the second variable while the lower passband is independently tuned by combining the two variables.

View Article and Find Full Text PDF

In this paper, a novel L network (LN) is presented, which is composed of a frequency-selected section (FSS) and a middle stub (MS). Based on the proposed LN, a tri-band T-junction power divider (TTPD) with impedance transformation and independent power division ratios is designed. Moreover, the closed-form design theory of the TTPD is derived based on the transmission line theory and circuit theory.

View Article and Find Full Text PDF

A type of polymeric nanoparticles loading indocyanine green and Pt(ii)-porphyrins (ICG-Pt-NPs) is constructed to achieve a synergistic effect of combined photothermal and two-photon activated photodynamic therapy. The nanoparticle core comprises the photosensitizer Pt(ii)-porphyrins (PtTFPP), and organic semiconducting polymer (PFO) that acts as a two-photon antenna. Negative ICG molecules, an NIR-absorbing photothermal dye, can be loaded into the positively charged poly-l-lysine (PLL) shell of the polymeric nanoparticles via electrostatic interaction.

View Article and Find Full Text PDF

A novel perturbation approach using additional metalized via-holes for implementation of the dual-band or wide-band dual-mode substrate integrated waveguide (SIW) filters is proposed in this paper. The independent perturbation on the first resonant mode TE101 can be constructed by applying the proposed perturbation approach, whereas the second resonant mode TE102 is not affected. Thus, new kinds of dual-band or wide-band dual-mode SIW filters with a fixed or an independently reconfigurable low-frequency band have been directly achieved.

View Article and Find Full Text PDF

To investigate the frequency shift phenomenon by inserting graphene, a generalized lossy transmission-line model and the related electrical parameter-extraction theory are proposed in this paper. Three kinds of graphene-based transmission lines with attenuation phenomenon including microstrip line, double-side parallel strip line, and uniplanar coplanar waveguide are analyzed under the common conditions where different chemical potentials are loaded on graphene. The values of attenuation constant and phase constant, and the real and imaginary parts of the characteristic impedance of transmission lines are extracted to analyze in details.

View Article and Find Full Text PDF

The two-dimensional (2D) or three-dimensional (3D) multiway power dividers based on transformation optical theory are proposed in this paper. It comprises of several nonisotropic mediums and one isotropic medium without any lumped and distributed elements. By using finite embedded coordinate transformations, the incident beam can be split and bent arbitrarily in order to achieve effective power division and transmission.

View Article and Find Full Text PDF

Background & Aims: Interstitial cells of Cajal (ICC) closely associate with nerves and smooth muscles to modulate gut motility. In the ICC microenvironment, although the circulating hormones/factors have been shown to influence ICC activities, the association between ICC and microvessels in the gut wall has not been described. We applied three-dimensional (3D) vascular histology with c-kit staining to identify the perivascular ICC and characterize their morphologic and population features in the human colon wall.

View Article and Find Full Text PDF

A novel coupled-line structure is proposed to design dual-band and high-power Gysel power dividers with inherent impedance-transforming functions. Based on traditional even- and odd-mode technique, the analytical design methods in closed-form formula are obtained and the accurate electrical parameters analysis is presented. Due to the usage of coupled-line sections, more design-parameter freedom and a wider frequency-ratio operation range for this kind of dual-band Gysel powder divider are obtained.

View Article and Find Full Text PDF

Two-dimensional (2D) histopathology is the standard analytical method for intestinal biopsied tissues; however, the role of 3-dimensional (3D) imaging system in the analysis of the intestinal tissues is unclear. The 3D structure of the crypt organoids from the intestinal stem cell culture and intestinal tissues from the donors and recipients after intestinal transplantation was observed using a 3D imaging system and compared with 2D histopathology and immunohistochemistry. The crypt organoids and intestinal tissues showed well-defined 3D structures.

View Article and Find Full Text PDF