Publications by authors named "Yuan-Yang Liu"

Background: Cold inducible RNA-binding protein (CIRP) is an important danger-associated molecular pattern involved in tissue-specific and systemic inflammation related to inflammation and Alzheimer's disease (AD). However, the precise roles and mechanism of CIRP in the functional changes in astrocytes during the development of AD are still unknown. This study aimed to assess gene expression alterations in astrocytes after they overexpress CIRP (oe-CIRP) and to explore the relationship between abnormal CIRP expression and AD.

View Article and Find Full Text PDF

Baeyer-Villiger monooxygenases (BVMOs) are remarkable biocatalysts for the Baeyer-Villiger oxidation of ketones to generate esters or lactones. The regioselectivity of BVMOs is essential for determining the ratio of the two regioisomeric products ("normal" and "abnormal") when catalyzing asymmetric ketone substrates. Starting from a known normal-preferring BVMO sequence from Pseudomonas putida KT2440 (PpBVMO), a novel BVMO from Gordonia sihwensis (GsBVMO) with higher normal regioselectivity (up to 97/3) was identified.

View Article and Find Full Text PDF

Baeyer-Villiger monooxygenases (BVMOs) are an emerging class of promising biocatalysts for the oxidation of ketones to prepare corresponding esters or lactones. Although many BVMOs have been reported, the development of highly efficient enzymes for use in industrial applications is desirable. In this work, we identified a BVMO from (BVMO) with a high affinity toward aliphatic methyl ketones ( < 3.

View Article and Find Full Text PDF

Baeyer-Villiger monooxygenases (BVMOs) are versatile biocatalysts in organic synthesis that can generate esters or lactones by inserting a single oxygen atom adjacent to a carbonyl moiety. The regioselectivity of BVMOs is essential in determining the ratio of two regioisomers for converting asymmetric ketones. Herein, we report a novel BVMO from Pseudomonas aeruginosa (PaBVMO); this has been exploited for the direct synthesis of medium-chain α,ω-dicarboxylic acids through a Baeyer-Villiger oxidation-hydrolysis cascade.

View Article and Find Full Text PDF