We present a systematic study of spectral and temporal structure of high-order harmonic generation (HHG) by solving accurately the time-dependent Schrödinger equation for a hydrogen atom in the multiphoton regime where the Keldysh parameter is greater unity. Combining with a time-frequency transform and an extended semiclassical analysis, we explore the role of quantum trajectory in HHG. We find that the time-frequency spectra of the HHG plateau near cutoff exhibit a decrease in intensity associated with the short- and long-trajectories when the ionization process is pushed from the multiphoton regime into the tunneling regime.
View Article and Find Full Text PDF