Publications by authors named "Yuan-Ruei Huang"

Studies of the neurobiological causes of anxiety disorders have suggested that the γ-aminobutyric acid (GABA) system increases synaptic concentrations and enhances the affinity of GABA (type A) receptors for benzodiazepine ligands. Flumazenil antagonizes the benzodiazepine-binding site of the GABA/benzodiazepine receptor (BZR) complex in the central nervous system (CNS). The investigation of flumazenil metabolites using liquid chromatography (LC)-tandem mass spectrometry will provide a complete understanding of the in vivo metabolism of flumazenil and accelerate radiopharmaceutical inspection and registration.

View Article and Find Full Text PDF

Clinical studies have demonstrated that the γ-aminobutyric acid type A (GABA) receptor complex plays a central role in the modulation of anxiety. Conditioned fear and anxiety-like behaviors have many similarities at the neuroanatomical and pharmacological levels. The radioactive GABA/BZR receptor antagonist, fluorine-18-labeled flumazenil, [F]flumazenil, behaves as a potential PET imaging agent for the evaluation of cortical damage of the brain in stroke, alcoholism, and for Alzheimer disease investigation.

View Article and Find Full Text PDF

The Arg-Gly-Asp (RGD) peptide shows a high affinity for αβ integrin, which is overexpressed in new tumor blood vessels and many types of tumor cells. The radiolabeled RGD peptide has been studied for cancer imaging and radionuclide therapy. We have developed a long-term tumor-targeting peptide DOTA-EB-cRGDfK, which combines a DOTA chelator, a truncated Evans blue dye (EB), a modified linker, and cRGDfK peptide.

View Article and Find Full Text PDF

Background: Liposomes are drug nano-carriers that are capable of targeting therapeutics to tumor sites because of enhanced permeability retention (EPR). In several preclinical studies with various tumor-bearing mice models, Re-liposome that has been developed by the Institute of Nuclear Energy Research (INER) demonstrates favorable in vivo tumor targeting, biodistribution, pharmacokinetics, and dosimetry. It inhibits the growth of tumors, increased survival, demonstrates good synergistic combination, and was safe to use.

View Article and Find Full Text PDF

Purpose: [(123)I]Epidepride is a radio-tracer with very high affinity for dopamine D(2)/D(3) receptors in brain. The importance of alteration in dopamine D(2)/D(3) receptor binding condition has been wildly verified in schizophrenia. In the present study we set up a rat schizophrenia model by chronic injection of a non-competitive NMDA receptor antagonist, MK-801, to examine if [(123)I]epidepride could be used to evaluate the alterations of dopamine D(2)/D(3) receptor binding condition in specific brain regions.

View Article and Find Full Text PDF