Secure key rate (SKR) of point-point quantum key distribution (QKD) is fundamentally bounded by the rate-loss limit. Recent breakthrough of twin-field (TF) QKD can overcome this limit and enables long distance quantum communication, but its implementation necessitates complex global phase tracking and requires strong phase references that not only add to noise but also reduce the duty cycle for quantum transmission. Here, we resolve these shortcomings, and importantly achieve even higher SKRs than TF-QKD, via implementing an innovative but simpler measurement-device-independent QKD that realizes repeaterlike communication through asynchronous coincidence pairing.
View Article and Find Full Text PDFThe linear constraint of secret key rate capacity is overcome by the twin-field quantum key distribution (QKD). However, the complex phase-locking and phase-tracking technique requirements throttle the real-life applications of the twin-field protocol. The asynchronous measurement-device-independent (AMDI) QKD, also called the mode-pairing QKD, protocol can relax the technical requirements and keep the similar performance of the twin-field protocol.
View Article and Find Full Text PDFQuantum network applications such as distributed quantum computing and quantum secret sharing represent a promising future network equipped with quantum resources. Entanglement generation and distribution over long distances are critical and unavoidable when utilizing quantum technology in a fully connected network. The distribution of bipartite entanglement over long distances has seen some progress, while the distribution of multipartite entanglement over long distances remains unsolved.
View Article and Find Full Text PDFTwin-field interference-based quantum conference key agreement protocols have been proposed and have achieved good performance in terms of the key rate and transmission distance in the finite-key regime. However, its performance significantly decreases when the strict constraint is broken regarding the optical pulse intensity and probability. Here, we propose a post-matching QCKA protocol to remove this constraint while obtaining a higher key rate.
View Article and Find Full Text PDFCoherent-one-way quantum key distribution (COW-QKD), which requires a simple experimental setup and has the ability to withstand photon-number-splitting attacks, has been not only experimentally implemented but also commercially applied. However, recent studies have shown that the current COW-QKD system is insecure and can only distribute secret keys safely within 20 km of the optical fiber length. In this study, we propose a practical implementation of COW-QKD by adding a two-pulse vacuum state as a new decoy sequence.
View Article and Find Full Text PDFTwin-field quantum key distribution (TFQKD), using single-photon-type interference, offers a way to exceed the rate-distance limit without quantum repeaters. However, it still suffers from photon losses and dark counts, which impose an ultimate limit on its transmission distance. In this Letter, we propose a scheme to implement TFQKD with an entangled coherent state source in the middle to increase its range, as well as comparing its performance under coherent attacks with that of TFQKD variants.
View Article and Find Full Text PDFQuantum secret sharing (QSS) is an essential primitive for the future quantum internet, which promises secure multiparty communication. However, developing a large-scale QSS network is a huge challenge due to the channel loss and the requirement of multiphoton interference or high-fidelity multipartite entanglement distribution. Here, we propose a three-user QSS protocol without monitoring signal disturbance, which is capable of ensuring the unconditional security.
View Article and Find Full Text PDFQuantum digital signatures (QDSs) promise information-theoretic security against repudiation and forgery of messages. Compared with currently existing three-party QDS protocols, multiparty protocols have unique advantages in the practical case of more than two receivers when sending a mass message. However, complex security analysis, numerous quantum channels and low data utilization efficiency make it intractable to expand three-party to multiparty scenario.
View Article and Find Full Text PDFIn this Erratum the funding and references sections of Opt. Lett.46, 1632 (2021)OPLEDP0146-959210.
View Article and Find Full Text PDFQuantum digital signatures (QDS) exploit quantum laws to guarantee non-repudiation, unforgeability and transferability of messages with information-theoretic security. Current QDS protocols face two major restrictions, including the requirement of the symmetrization step with additional secure classical channels and the quadratic scaling of the signature rate with the probability of detection events. Here, we present an efficient QDS protocol to overcome these issues by utilizing the classical post-processing operation called post-matching method.
View Article and Find Full Text PDFDevice-independent quantum key distribution (DIQKD) exploits the violation of a Bell inequality to extract secure keys even if users' devices are untrusted. Currently, all DIQKD protocols suffer from the secret key capacity bound, i.e.
View Article and Find Full Text PDFThe BB84 quantum key distribution (QKD) combined with decoy-state method is currently the most practical protocol, which has been proved secure against general attacks in the finite-key regime. Thereinto, statistical fluctuation analysis methods are very important in dealing with finite-key effects, which directly affect secret key rate, secure transmission distance and most importantly, the security. There are two tasks of statistical fluctuation in decoy-state BB84 QKD.
View Article and Find Full Text PDF