Methamphetamine is a highly addictive central stimulant with extensive and strong neurotoxicity. The neurotoxicity of methamphetamine is closely related to the imbalance of dopamine levels and the destruction of the blood-brain barrier. An increase in dopamine may induce adverse effects such as behavioral sensitization and excessive locomotion.
View Article and Find Full Text PDFTetrahydropalmatine (THP) has analgesic, hypnotic, sedative, and other pharmacological effects. Brain-derived neurotrophic factor (BDNF) plays an important role in neuronal plasticity, growth, and development. However, their mechanism of action in methamphetamine (MA)-induced neurotoxicity remains unclear.
View Article and Find Full Text PDFLevo-tetrahydropalmatine (l-THP) is mainly derived from the dried tuber of the Papaveraceae plant Corydalis, also called Corydalis B, which is a drug with analgesic, hypnotic, sedative and other effects. Methamphetamine (METH) belongs to the central nervous stimulant and is a highly addictive drug. It is an urgent problem to study the mechanism of methamphetamine neurotoxicity and to search for the therapeutic targets of the METH addiction.
View Article and Find Full Text PDFMethamphetamine is a derivative of amphetamines, a highly addictive central stimulant with multiple systemic toxicity including the brain, heart, liver, lung, and spleen. It has adverse effects such as apoptosis and breakdown of the blood-brain barrier. Methamphetamine is a fatal and toxic chemical substance, and its lethal mechanism has been widely studied in recent years.
View Article and Find Full Text PDFObjectives: SIRT1 is an antioxidative factor, but its mechanism in methamphetamine (MA)-induced lung injury remains unclear. The purpose of this study is to determine whether MA can disrupt the integrity of alveolar epithelial barrier, whether SIRT1 is involved in MA-induced chronic lung injury and whether Resveratrol (Res) can protect the integrity of alveolar epithelial cells by regulating ROS to activate SIRT1/PTEN/p-Akt pathway.
Materials And Methods: The rats were randomly divided into control group and MA group.
Toxicol In Vitro
February 2020