Publications by authors named "Yuan-Chih Lo"

Molecular design and precise control of thin-film morphology and crystallinity of solution-processed small molecules are important for enhancing charge transport mobility of organic field-effect transistors and gaining more insight into the structure-property relationship. Here, two donor-acceptor-donor (D-A-D) architecture small molecules and comprising an electron-donating triarylamine () and two different electron-withdrawing cores, isoindigo () and thienoisoindigo (), respectively, were synthesized and characterized. Replacing the phenylene rings of central A with thiophene gives a core, which reduces the optical band gap and upshifts the energy levels of frontier molecular orbitals.

View Article and Find Full Text PDF

The most attractive aspect of perovskite nanocrystals (NCs) for optoelectronic applications is their widely tunable emission wavelength, but it has been quite challenging to tune it without sacrificing the photoluminescence quantum yield (PLQY). In this work, we report a facile ligand-optimized ion-exchange (LOIE) method to convert room-temperature spray-synthesized, perovskite parent NCs that emit a saturated green color to NCs capable of emitting colors across the entire visible spectrum. These NCs exhibited exceptionally stable and high PLQYs, particularly for the pure blue (96%) and red (93%) primary colors that are indispensable for display applications.

View Article and Find Full Text PDF

Four new donor-acceptor-acceptor' (D-A-A')-configured donors, CPNT, DCPNT, CPNBT, and DCPNBT equipped with naphtho[1,2-c:5,6-c']bis([1,2,5]-thiadiazole) (NT) or naphtho[2,3-c][1,2,5]thiadiazole (NBT) as the central acceptor (A) unit bridging triarylamine donor (D) and cyano or dicyanovinylene acceptor (A'), were synthesized and characterized. All molecules exhibit bathochromic absorption shifts as compared to those of the benzothiadiazole (BT)-based analogues owing to improved electron-withdrawing and quinoidal character of NT and NBT cores that lead to stronger intramolecular charge transfer. Favorable energy level alignments with C , together with the good thermal stability and the antiparallel dimeric packing render CPNT and DCPNT suitable donors for vacuum-processed organic photovoltaics (OPV)s.

View Article and Find Full Text PDF

Three D-A-D-configured molecules DTPBT, DTPNT, and DTPNBT with high quantum yield of orange red (628 nm), red (659 nm), and deep-red/NIR (710 nm) fluorescence, respectively, were developed as emitting dopants in an exciplex-forming cohost (TCTA:3P-T2T) for high-efficiency fluorescence-based organic light-emitting diodes (OLEDs). The obtained physical properties together with theoretical calculations analyzed from these new molecules establish a clear structure-property relationship, in which the feature of central acceptor 2,1,3-benzothiadiazole (BT), naphtho[1,2-c:5,6-c']bis[1,2,5]thiadiazole (NT), and 2,1,3-naphthothiadiazole (NBT) plays the crucial role for governing the physical characteristics. The optimized device configured as ITO/HAT-CN/TAPC/TCTA/TCTA:3P-T2T:5% emitter/3P-T2T/LiF/Al gave a record-high efficiency of orange red (591 nm, 15%), red (647 nm, 10%), and deep-red/NIR (689 nm, 9%) electroluminescent devices.

View Article and Find Full Text PDF

Four new donor-acceptor-acceptor (D-A-A) type molecules (DTCPB, DTCTB, DTCPBO, and DTCTBO), wherein benzothiadiazole or benzoxadiazole serves as the central A bridging triarylamine (D) and cyano group (terminal A), have been synthesized and characterized. The intramolecular charge-transfer character renders these molecules with strong visible light absorption and forms antiparallel dimeric crystal packing with evident π-π intermolecular interactions. The characteristics of the vacuum-processed photovoltaic device with a bulk heterojunction active layer employing these molecules as electronic donors combining C as electronic acceptor were examined and a clear structure-property-performance relationship was concluded.

View Article and Find Full Text PDF

Two novel small molecules and , based on ditolylaminothienyl group as donor moiety and quinoxaline as middle acceptor moiety with different terminal acceptor groups were synthesized and characterized in this work. In order to study the photovoltaic properties of and , bulk-heterojunction solar cells with the configuration of FTO/c-TiO/(or ):C/MoO/Ag were fabricated, in which and acted as the donors and neat C as the acceptor. When the weight ratio of :C reached 1:2 and the active layer was annealed at 100°C, the optimal device was realized with the power conversion efficiency (PCE) of 1.

View Article and Find Full Text PDF