Publications by authors named "YuShan Tu"

Chronic pain is associated with alterations in fundamental cellular processes. Here, we investigate whether Beclin 1, a protein essential for initiating the cellular process of autophagy, is involved in pain processing and is targetable for pain relief. We find that monoallelic deletion of Becn1 increases inflammation-induced mechanical hypersensitivity in male mice.

View Article and Find Full Text PDF

The electrocatalytic reduction of SO to produce HS is a critical approach for achieving the efficient utilization of sulfur resources. At the core of this approach for commercial applications lies the imperative need to elevate current density. However, the challenges posed by high current density manifest in the rapid depletion of protons, leading to a decrease in SO partial pressure, consequently hampering the generation and separation of HS.

View Article and Find Full Text PDF

Background And Purpose: Chronic pain is a devastating problem affecting one in five individuals around the globe, with neuropathic pain the most debilitating and poorly treated type of chronic pain. Advances in transcriptomics have contributed to cataloguing diverse cellular pathways and transcriptomic alterations in response to peripheral nerve injury but have focused on phenomenology and classifying transcriptomic responses.

Experimental Approach: To identifying new types of pain-relieving agents, we compared transcriptional reprogramming changes in the dorsal spinal cord after peripheral nerve injury cross-sex and cross-species, and imputed commonalities, as well as differences in cellular pathways and gene regulation.

View Article and Find Full Text PDF

The dominant view in the field of pain is that peripheral neuropathic pain is driven by microglia in the somatosensory processing region of the spinal dorsal horn. Here, to the contrary, we discovered a form of neuropathic pain that is independent of microglia. Mice in which the nucleus pulposus (NP) of the intervertebral disc was apposed to the sciatic nerve developed a constellation of neuropathic pain behaviours: hypersensitivity to mechanical, cold, and heat stimuli.

View Article and Find Full Text PDF

NMDA receptors (NMDARs) are critical for physiological synaptic plasticity, learning, and memory and for pathological plasticity and neuronal death. The GluN1 subunit is encoded by a single gene, GRIN1, with 8 splice variants, but whether the diversity generated by this splicing has physiological consequences remains enigmatic. Here, we generate mice lacking from the GluN1 exon 5-encoded N1 cassette (GluN1a mice) or compulsorily expressing this exon (GluN1b mice).

View Article and Find Full Text PDF

Neonatal hindpaw incision primes developing spinal nociceptive circuitry, resulting in enhanced hyperalgesia following reinjury in adulthood. Spinal microglia contribute to this persistent effect, and microglial inhibition at the time of adult reincision blocks the enhanced hyperalgesia. Here, we pharmacologically inhibited microglial function with systemic minocycline or intrathecal SB203580 at the time of neonatal incision and evaluated sex-dependent differences following adult reincision.

View Article and Find Full Text PDF

Cerebellar granule neurons are the most numerous neuronal subtype in the central nervous system. Within the developing cerebellum, these neurons are derived from a population of progenitor cells found within the external granule layer of the cerebellar anlage, namely the cerebellar granule neuron precursors (GNPs). The timely proliferation and differentiation of these precursor cells, which, in rodents occurs predominantly in the postnatal period, is tightly controlled to ensure the normal morphogenesis of the cerebellum.

View Article and Find Full Text PDF

Microglia-neuron signalling in the spinal cord is a key mediator of mechanical allodynia caused by peripheral nerve injury. We recently reported sex differences in microglia in pain signalling in mice: spinal mechanisms underlying nerve injury-induced allodynia are microglial dependent in male but not female mice. Whether this sex difference in pain hypersensitivity mechanisms is conserved in other species is unknown.

View Article and Find Full Text PDF

Insulin resistance is a chronic inflammatory condition accompanying obesity or high fat diets that leads to type 2 diabetes. It is hypothesized that lipids and gut bacterial compounds in particular contribute to metabolic inflammation by activating the immune system; however, the receptors detecting these "instigators" of inflammation remain largely undefined. Here, we show that circulating activators of NOD1, a receptor for bacterial peptidoglycan, increase with high fat feeding in mice, suggesting that NOD1 could be a critical sensor leading to metabolic inflammation.

View Article and Find Full Text PDF

NMDA receptor (NMDAR)-mediated fast excitatory neurotransmission is implicated in a broad range of physiological and pathological processes in the mammalian central nervous system. The function and regulation of NMDARs have been extensively studied in neurons from rodents and other non-human species, and in recombinant expression systems. Here, we investigated human NMDARs in situ by using neurons produced by directed differentiation of human induced pluripotent stem cells (iPSCs).

View Article and Find Full Text PDF

A large and rapidly increasing body of evidence indicates that microglia-to-neuron signaling is essential for chronic pain hypersensitivity. Using multiple approaches, we found that microglia are not required for mechanical pain hypersensitivity in female mice; female mice achieved similar levels of pain hypersensitivity using adaptive immune cells, likely T lymphocytes. This sexual dimorphism suggests that male mice cannot be used as proxies for females in pain research.

View Article and Find Full Text PDF

Stroke in the neonatal brain frequently results in neurologic impairments including cognitive disability. We investigated the effect of long-term sodium valproate (valproate) and trichostatin A (TSA) treatment upon post-stroke neurogenesis in the dentate gyrus (DG) of stroke-injured immature mice. Decreased or abnormal integration of newborn DG neurons into hippocampal circuits can result in impaired visual-spatial function, abnormal modulation of mood-related behaviors, and the development of post-stroke epilepsy.

View Article and Find Full Text PDF