Publications by authors named "YuPo Lin"

Global warming, driven by the accumulation of anthropogenic greenhouse gases, particularly CO, in the atmosphere, has garnered significant attention due to its detrimental environmental impacts. To combat this critical issue, the deployment of CO capture and utilization (CCU) strategies has been considered as one of the technology-based solutions, leading to extensive scientific and engineering research. Electrochemical pH-swing (EPS) processes offer a promising approach to diverse CCU pathways, such as the delivery of pure CO gas, the delivery of bicarbonate (e.

View Article and Find Full Text PDF

Influenza epidemics and pandemics caused by newly emerging virus strains highlight an urgent need to develop a universal vaccine against viruses. Previously, a monoglycosylated X-181 vaccine demonstrated that the HA possessing a single N-acetylglucosamine at each N-glycosylation site is superior to confer broader protection in mice than conventional vaccines. However, the greatest challenge in conducting clinical trials is the need to develop robust manufacturing processes capable of producing vaccines at the pilot scale with the desired stability, potency, and efficacy.

View Article and Find Full Text PDF

Due to the growing and diverse demands on water supply, exploitation of non-conventional sources of water has received much attention. Since water consumption for irrigation is the major contributor to total water withdrawal, the utilization of non-conventional sources of water for the purpose of irrigation is critical to assuring the sustainability of water resources. Although numerous studies have been conducted to evaluate and manage non-conventional water sources, little research has reviewed the suitability of available water technologies for improving water quality, so that water reclaimed from non-conventional supplies could be an alternative water resource for irrigation.

View Article and Find Full Text PDF

This paper presents a capacitorless low-dropout (LDO) regulator with fast transient response and data reverse telemetry circuit for fully implantable wireless transmission applications. We propose a novel hybrid feedback structure using high-frequency compensation technology to achieve a rapid transient response for the LDO regulator. To reduce the size of the implant and transmit neural recordings through the same coil without interfering with power transmission, the load-shift-key (LSK) modulation technique is adopted for back data telemetry.

View Article and Find Full Text PDF

Although deep brain stimulation (DBS) has been a promising alternative for treating several neural disorders, the mechanisms underlying the DBS remain not fully understood. As rat models provide the advantage of recording and stimulating different disease-related regions simultaneously, this paper proposes a battery-less, implantable neuro-electronic interface suitable for studying DBS mechanisms with a freely-moving rat. The neuro-electronic interface mainly consists of a microsystem able to interact with eight different brain regions bi-directionally and simultaneously.

View Article and Find Full Text PDF

To meet the stringent Great Lakes Initiative (GLI) wastewater discharge mercury (Hg) limit of 1.3 ppt (ng/L), mercury removal technologies need to be identified and investigated. The goals of this study were to (1) identify and assess available wastewater treatment technologies for mercury removal from an oil refinery wastewater; and (2) conduct bench-scale tests to provide comparable, transparent, and uniform results to assess their performance at low mercury concentrations.

View Article and Find Full Text PDF

Within the biorefinery paradigm, many non-monomeric sugar compounds have been shown to be inhibitory to enzymes and microbial organisms that are used for hydrolysis and fermentation. Here, two novel separation technologies, polyelectrolyte polymer adsorption and resin-wafer electrodeionization (RW-EDI), have been evaluated to detoxify a dilute acid pretreated biomass slurry. Results showed that detoxification of a dilute acid pretreated ponderosa pine slurry by sequential polyelectrolyte and RW-EDI treatments was very promising, with significant removal of acetic acid, 5-hydroxymethyl furfural, and furfural (up to 77%, 60%, and 74% removed, respectively) along with >97% removal of sulfuric acid.

View Article and Find Full Text PDF

Distiller's grains and solubles (DGS) is the major co-product of corn dry mill ethanol production, and is composed of 30% protein and 30-40% polysaccharides. We report a strategy for simultaneous extraction of protein with food-grade biobased solvents (ethyl lactate, d-limonene, and distilled methyl esters) and enzymatic saccharification of glucan in DGS. This approach would produce a high-value animal feed while simultaneously producing additional sugars for ethanol production.

View Article and Find Full Text PDF