Publications by authors named "YuLong Xu"

Background: Hepatocellular carcinoma (HCC) is a leading cause of cancer mortality globally, and its progression is associated with various factors, including parasitic infections such as Clonorchis sinensis (C. sinensis). Although C.

View Article and Find Full Text PDF

Background And Objectives: Efsubaglutide alfa is a novel long-acting human glucagon-like peptide-1 receptor agonist. Clinical studies in patients with type 2 diabetes (T2D) have shown excellent glucose-lowering effects. This study aims to develop a population pharmacokinetic (popPK) model for efsubaglutide alfa to characterize its pharmacokinetic (PK) profile and assess the impact of intrinsic and extrinsic factors.

View Article and Find Full Text PDF

The recovery and repurposing of noble metal from electronic waste has attracted significant attention due to the tremendous benefits to the economy and environment but is of great challenge. Herein, a two-dimensional oxygen-rich COF material, named TbDa-COF, was fabricated via integrating 1,3,5-tris(4-formylphenyl)benzene (TFPB) and oxygen-rich 3,3'-dihydroxybenzidine (DHB) into a π-conjugated framework. TbDa-COF permits selective gold recovery through local coordination and electrostatic interaction, which is then followed via in situ reduction to form gold nanoparticles (AuNPs) within its skeleton.

View Article and Find Full Text PDF

Heterogeneity engineering provides an effective route to manipulate the chemical and physical properties of covalent organic frameworks (COFs) but is still under development for their single-crystal form. Here, we report the strategy based on a combination of the template-assisted modulated synthesis with a one-pot crystallization-reduction method to directly construct ordered macro-microporous single crystals of an amine-linked three-dimensional (3D) COF (OM-COF-300-SR). In this strategy, the colloidal crystal-templating synthesis not only assists the formation of ordered macropores but also greatly facilitates the in situ conversion of linkages (from imine to amine) in the COF-300 single crystals.

View Article and Find Full Text PDF

The role of mitochondrial complex I (MC-I) dysfunction is well-documented across a range of neurodegenerative disorders. Recently, a novel positron emission tomography (PET) radioligand, [F]CNL02, has been synthesized to target MC-I. In this paper, we provide a comprehensive characterization of [F]CNL02, using nonhuman primate as a model system.

View Article and Find Full Text PDF

Bromodomain and extra-terminal (BET) proteins are critical regulators of gene transcription, as they recognize acetylated lysine residues. The BD1 bromodomain of BRD4, a member of the BET family, has emerged as a promising therapeutic target for various diseases. This study aimed to develop and evaluate a novel C-11 labeled PET radiotracer, [C]YL10, for imaging the BD1 bromodomain of BRD4 in vivo.

View Article and Find Full Text PDF

Development of ultra-sensitive and rapid fluorescent nanoprobe for quantitative and targeted monitoring of metronidazole is of crucial practical significance, but is of great challenge. Herein, a vinyl-linked covalent organic frameworks (sp-BNTP-COF) was fabricated via integrating the 1,3,5-tris-(4-formylphenyl) triazine with 5,5'-bis(cyanomethyl)-2,2'-bipyridine into the skeleton. As-obtained sp-BNTP-COF exhibited excellent luminescence characteristics with an absolute fluorescence quantum yield of 8 %.

View Article and Find Full Text PDF

Small molecules that interfere with the interaction between acetylated protein tails and the tandem bromodomains of BET (bromodomain and extra-terminal) family proteins are pivotal in modulating immune/inflammatory and neoplastic diseases. This study aimed to develop a novel PET imaging tracer, [C]GSK023, that targets the N-terminal bromodomain (BD1) of BET family proteins with high selectivity and potency, thereby enriching the chemical probe toolbox for epigenetic imaging. [C]GSK023, a radio-chemical probe, was designed and synthesized to specifically target the BET BD1.

View Article and Find Full Text PDF
Article Synopsis
  • Fluorescence imaging in the NIR-II window is important for biomedical research but is hindered by the low brightness of available NIR-II fluorophores.
  • Researchers developed high-performance NIR-II chromophores by engineering molecular isomers, specifically creating pairs of cis-trans isomers with varying chemical groups.
  • The study found that cis-isomers exhibited higher fluorescence quantum yields due to reduced non-radiative transitions, paving the way for optimizing fluorophores for intravital imaging applications.
View Article and Find Full Text PDF

The paired bromodomains (BD1 and BD2), located in the bromodomain and extra-terminal (BET) family proteins, perform specific functions in gene transcriptional control and expression. Targeting specific bromodomains with inhibitors holds promise for achieving therapeutic benefits with reduced side effects. However, the comprehension of this target related to the disease is still restricted.

View Article and Find Full Text PDF

To effectively remove heavy metal Hg(II) from water bodies, a novel adsorbent of MgAl-layered double hydroxide (LDH) was designed and functionalized with Schiff base. The characterization results of the adsorbent (MgAl-LDH@SiO-AG) show that the Schiff base polymer was successfully coated onto the outside surface of MgAl-LDH with hexagonal structure. The theoretical maximum adsorption capacity to Hg(II) is 228.

View Article and Find Full Text PDF

The construction of covalent organic frameworks (COFs) with unique structures has great significance in exploring the structure-function relationship and extending their potential applications. Fibrous COFs have demonstrated superior performance in specific application scenarios owing to the distinctive three-dimensional (3D) structure. Herein, we report a facile strategy for the fabrication of 3D COF nanofiber by exploiting silver amalgam as a bridging agent to assemble one-dimensional-extended PA-COF modules into a tubular structure.

View Article and Find Full Text PDF

Targeting receptor-interacting protein kinase 1 (RIPK1) has emerged as a promising therapeutic stratagem for neurodegenerative disorders, particularly Alzheimer's disease (AD). A positron emission tomography (PET) probe enabling brain RIPK1 imaging can provide a powerful tool to unveil the neuropathology associated with RIPK1. Herein, the development of a new PET radioligand, [C]CNY-10 is reported, which may enable brain RIPK1 imaging.

View Article and Find Full Text PDF

Sigma-1 receptor (σR) is an intracellular protein implicated in a spectrum of neurodegenerative conditions, notably Alzheimer's disease (AD). Positron emission tomography (PET) imaging of brain σR could provide a powerful tool for better understanding the underlying pathomechanism of σR in AD. In this study, we successfully developed a F-labeled σR radiotracer [F]CNY-05 via an innovative ruthenium (Ru)-mediated F-deoxyfluorination method.

View Article and Find Full Text PDF

Introduction: Sirtuins (SIRTs) comprise a group of histone deacetylase enzymes crucial for regulating metabolic pathways and contributing significantly to various disease mechanisms. Sirtuin 1 (SIRT1), among the seven known mammalian homologs, is extensively investigated and understood, playing a key role in neurodegenerative disorders and cancer. This study focuses on potential as a therapeutic target for conditions such as Parkinson's disease (PD), Huntington's disease (HD), and Alzheimer's disease (AD).

View Article and Find Full Text PDF

A novel strategy in which palladium(II)-catalyzed tandem cyclization is used to obtain N-heterocyclic architectures containing a seven-membered ring has been developed and used to synthesize a series of derivatives. The reaction uses an eco-friendly mixed solvent (water : EtOH = 2 : 1) instead of DMSO and maintains a high yield (91%). Its potential application value and reaction mechanism have also been explored.

View Article and Find Full Text PDF

Purpose: Orexin receptors (OXRs) play a crucial role in modulating various physiological and neuropsychiatric functions within the central nervous system (CNS). Despite their significance, the precise role of OXRs in the brain remains elusive. Positron emission tomography (PET) imaging is instrumental in unraveling CNS functions, and the development of specific PET tracers for OXRs is a current research focus.

View Article and Find Full Text PDF

A one-pot synthesis afforded a magnetic, crosslinked polymer adsorbent (m-P6) with a variety of functional groups to realize simultaneous adsorption of Cd, Pb, Hg, and As. The material was characterized by TEM-EDS, XRD, FT-IR, VSM, and XPS. Kinetic and isothermal analyses suggested mainly chemisorption processes of heavy metal ions that form multiple layers on heterogeneous surfaces.

View Article and Find Full Text PDF

The NOD-like receptor (NLR) family pyrin-domain-containing 3 (NLRP3) inflammasome, an essential component of the innate immune system, has been emerging as a viable drug target and a potential biomarker for human diseases. In our efforts to develop novel small molecule NLRP3 inhibitors, a 1-(5-chloro-2-methoxybenzyl)-4-phenyl-1H-1,2,3-triazole scaffold was designed via a rational approach based on our previous leads. Structure-activity relationship studies and biophysical studies identified a new lead compound as a potent (IC: 0.

View Article and Find Full Text PDF

Optical three-dimensional (3D) molecular imaging is highly desirable for providing precise distribution of the target-of-interest in disease models. However, such 3D imaging is still far from wide applications in biomedical research; 3D brain optical molecular imaging, in particular, has rarely been reported. In this report, we designed chemiluminescence probes with high quantum yields, relatively long emission wavelengths, and high signal-to-noise ratios to fulfill the requirements for 3D brain imaging in vivo.

View Article and Find Full Text PDF

Effective control over the crystallization of metal-organic framework (MOF) films is of great importance not only for the performance study and optimization in related applications but also for the fundamental understanding of the involved reticular chemistry. Featuring many technological advantages, electrochemical synthesis has been extensively reported for many MOF materials but is still challenged by the production of dense oriented films with a large-range tuning of thickness. Here, we report a ligand-oxidation-based anodic strategy capable of synthesizing oriented films of two-dimensional (2D) and three-dimensional (3D) conductive M-catecholate MOFs (2D Cu(HHTP), 2D Zn(HHTP), 2D Co(HHTP), 3D YbHHTP, and 2D CuTBA) with tunable thicknesses up to tens of micrometers on commonly used electrodes.

View Article and Find Full Text PDF

Background: Prostate cancer (PCa) is the most common malignancy diagnosed in men. Immune checkpoint blockade (ICB) alone showed disappointing results in PCa. It is partly due to the formation of immunosuppressive tumor microenvironment (TME) could not be reversed effectively by ICB alone.

View Article and Find Full Text PDF

This paper investigates the correlation between the degree and severity of CT inflammatory infiltration in the retroperitoneal space of acute pancreatitis (AP). A total of 113 patients were included based on diagnostic criteria. The general data of the patients and the relationship between the computed tomography severity index (CTSI) and pleural effusion (PE), involvement, degree of inflammatory infiltration of retroperitoneal space (RPS), number of peripancreatic effusion sites, and degree of pancreatic necrosis on contrast-enhanced CT at different times were studied.

View Article and Find Full Text PDF

Monitoring of uric acid (UA) levels in biological samples is of great significance for human health, while the development of a simple and effective method for the precise determination of UA content is still challenging. In the present study, a two-dimensional (2D) imine-linked crystalline pyridine-based covalent organic framework (TpBpy COF) was synthesized using 2,4,6-triformylphloroglucinol (Tp) and [2,2'-bipyridine]-5,5'-diamine (Bpy) as precursors via Schiff-base condensation reactions and was characterized with scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDS), Powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR) spectroscopy, and Brunauer-Emmett-Teller (BET) assays. The as-synthesized TpBpy COF exhibited excellent visible light-induced oxidase-like activity, ascribed to the generation of superoxide radicals (O) by photo-generated electron transfer.

View Article and Find Full Text PDF

Scar-free wound healing is a challenging process due to the excessive deposition of extracellular matrix and collagen. To overcome this issue, hydrogels with superior biochemical and mechanical properties have been used in combination with medicinal compounds as wound dressings. In this study, a novel composite hydrogel consisting of double-crosslinked photocurable hyaluronic acid methacrylate (HAMA) and Laponite (Lap) loaded with bioactive bone morphogenetic protein 4 (BMP4) was developed and thoroughly characterized for its properties such as degradation, morphology, porosity, compression, skin adhesion and load release.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionh9rj7efheu4note2p36ljf3p4mvsf1jc): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once