Publications by authors named "YuBin He"

The diversity of host plants is an important reason for the global spread of Hyphantria cunea. However, no studies have explored the role of the antioxidant defense system with catalase (CAT) as the core at the molecular level in the adaptation of the H. cunea to host plant secondary metabolites.

View Article and Find Full Text PDF

Membrane technology is an important component of resource recovery. Covalent organic frameworks (COFs) with inherent long-range ordered structure and permanent porosity are ideal materials for fabricating advanced membrane. Zwitterionic COFs have unique features beyond single ionic COFs containing anions or cations.

View Article and Find Full Text PDF

Pb is a prevalent heavy metal contaminant in the habitats of herbivorous insects. This study investigated the tolerance level of Lymantria dispar larvae to Pb and its corresponding mechanism focusing on the role of ZIP genes. The detrimental impacts of Pb on larval growth and survival exhibited a dose-dependent relationship, with a survival rate of 48 % even at the extreme concentration of 3424 mg/kg.

View Article and Find Full Text PDF

Oxide ceramic electrolytes (OCEs) have great potential for solid-state lithium metal (Li) battery applications because, in theory, their high elastic modulus provides better resistance to Li dendrite growth. However, in practice, OCEs can hardly survive critical current densities higher than 1 mA/cm. Key issues that contribute to the breakdown of OCEs include Li penetration promoted by grain boundaries (GBs), uncontrolled side reactions at electrode-OCE interfaces, and, equally importantly, defects evolution (e.

View Article and Find Full Text PDF

Lithium metal (Li) solid-state batteries encounter implementation challenges due to dendrite formation, side reactions, and movement of the electrode-electrolyte interface in cycling. Notably, voids and cracks formed during battery fabrication/operation are hot spots for failure. Here, a self-healing, flowable yet solid electrolyte composed of mobile ceramic crystals embedded in a reconfigurable polymer network is reported.

View Article and Find Full Text PDF

Heavy metal is a serious environmental pollutant with all kinds of biotoxic effects. The immunomodulatory effects of Cd stress on Lymantria dispar larvae and its underlying mechanisms were investigated. The susceptibility of Cd-treated larvae to Beauveria bassiana (Bb) was significantly increased by 27.

View Article and Find Full Text PDF

Aims: Heart failure (HF) and non-alcoholic fatty liver disease (NAFLD) are significant global health issues with a complex interrelationship. This study investigates their shared biomarkers and causal relationships using bioinformatics and Mendelian randomization (MR) approaches.

Methods: We analysed NAFLD and HF datasets from the Gene Expression Omnibus (GEO).

View Article and Find Full Text PDF

Background: Myocarditis is increasingly recognized as a critical health issue, particularly among youth and middle-aged populations. This study aims to analyze the global burden and trends of myocarditis in these age groups to emphasize the need for region-specific prevention and treatment strategies.

Methods: Using data from the Global Burden of Disease (GBD) study (1990-2019), we evaluated the age-standardized rates (ASR) of myocarditis in individuals aged 10 to 54 years.

View Article and Find Full Text PDF

Background: Inflammation plays a pivotal role in the pathogenesis of heart failure (HF). This study was aimed to the potential association between complete blood cell count (CBC)-derived inflammatory biomarkers and HF.

Methods: Data from the National Health and Nutrition Examination Survey (NHANES) 2009-2018 were utilised.

View Article and Find Full Text PDF

Realizing room-temperature, efficient, and reversible fluoride-ion redox is critical to commercializing the fluoride-ion battery, a promising post-lithium-ion battery technology. However, this is challenging due to the absence of usable electrolytes, which usually suffer from insufficient ionic conductivity and poor (electro)chemical stability. Herein we report a water-in-salt (WIS) electrolyte based on the tetramethylammonium fluoride salt, an organic salt consisting of hydrophobic cations and hydrophilic anions.

View Article and Find Full Text PDF

Background: Our study aimed to identify inclisiran-related adverse events(AEs) for primary hypercholesterolemia and arteriosclerotic cardiovascular disease(ASCVD) from the US FDA Adverse Event Reporting System (FAERS) database, analyzing its links to AEs in the overall patient population and sex-specific subgroups to improve medication safety.

Methods: We analyzed inclisiran-related AEs signals by using statistical methods like Reporting Odds Ratio (ROR), Proportional Reporting Ratios (PRR), Bayesian Confidence Propagation Neural Network (BCPNN), and Multi-item Gamma-Poisson Shrinker (MGPS).

Results: Analyzing 2,400 AE reports with inclisiran as the primary suspected drug in the FAERS database, we identified 70 AE signals over 13 organ systems using the above four methods.

View Article and Find Full Text PDF

Solid polymer electrolytes based on plastic crystals are promising for solid-state sodium metal (Na) batteries, yet their practicality has been hindered by the notorious Na-electrolyte interface instability issue, the underlying cause of which remains poorly understood. Here, by leveraging a model plasticized polymer electrolyte based on conventional succinonitrile plastic crystals, we uncover its failure origin in Na batteries is associated with the formation of a thick and non-uniform solid electrolyte interphase (SEI) and whiskery Na nucleation/growth. Furthermore, we design a new additive-embedded plasticized polymer electrolyte to manipulate the Na deposition and SEI formulation.

View Article and Find Full Text PDF

Single Li ion conducting polyelectrolytes (SICs), which feature covalently tethered counter-anions along their backbone, have the potential to mitigate dendrite formation by reducing concentration polarization and preventing salt depletion. However, due to their low ionic conductivity and complicated synthetic procedure, the successful validation of these claimed advantages in lithium metal (Li ) anode batteries remains limited. In this study, we fabricated a SIC electrolyte using a single-step UV polymerization approach.

View Article and Find Full Text PDF

var. is a traditional herbal medicine in China. In this study, the anti-inflammatory activities of active ingredients of var.

View Article and Find Full Text PDF

Background: Acute thoracic aortic dissection (ATAD) is a fatal condition characterized by tear of intima, formation of false lumen and rupture of aorta. However, the subpopulations of normal and dissected aorta remain less studied.

Methods: Single-cell RNA sequencing was performed including 5 patients with ATAD and 4 healthy controls.

View Article and Find Full Text PDF

Designing stable Li metal and supporting solid structures (SSS) is of fundamental importance in rechargeable Li-metal batteries. Yet, the stripping kinetics of Li metal and its mechanical effect on the supporting solids (including solid electrolyte interface) remain mysterious to date. Here, through nanoscale in situ observations of a solid-state Li-metal battery in an electron microscope, two distinct cavitation-mediated Li stripping modes controlled by the ratio of the SSS thickness (t) to the Li deposit's radius (r) are discovered.

View Article and Find Full Text PDF

Background: Ulcerative colitis is a unique inflammatory bowel disease with ulcerative lesions of the colonic mucosa. Melianodiol (MN), a triterpenoid, isolated from the fruits of the Chinese medicinal plant , possesses significant anti-inflammatory properties.

Objective: The present study investigated the protective effects of MN on lipopolysaccharide (LPS)-induced macrophages and DSS-mediated ulcerative colitis in mice.

View Article and Find Full Text PDF

The rechargeability of aqueous zinc metal batteries is plagued by parasitic reactions of the zinc metal anode and detrimental morphologies such as dendritic or dead zinc. To improve the zinc metal reversibility, hereby we report a new solution structure of aqueous electrolyte with hydroxyl-ion scavengers and hydrophobicity localized in solvent clusters. We show that although hydrophobicity sounds counterintuitive for an aqueous system, hydrophilic pockets may be encapsulated inside a hydrophobic outer layer, and a hydrophobic anode-electrolyte interface can be generated through the addition of a cation-philic, strongly anion-phobic, and OH-reactive diluent.

View Article and Find Full Text PDF

Solid-state lithium-metal (Li) batteries are gaining traction for electric vehicle applications because they replace flammable liquid electrolytes with a safer, solid-form electrolyte that also offers higher energy density and better resistance against Li dendrite formation. Solid polymer electrolytes (SPEs) are highly promising candidates because of their tuneable mechanical properties and easy manufacturability; however, their electrochemical instability against lithium-metal (Li), mediocre conductivity and poorly understood Li/SPE interphases have prevented extensive application in real batteries. In particular, the origin of the low Coulombic efficiency (CE) associated with SPEs remains elusive, as the debate continues as to whether it originates from unfavoured interfacial reactions or lithium dendritic growth and dead lithium formation.

View Article and Find Full Text PDF

Polymer electrolyte membrane fuel cells can generate high power using a potentially green fuel (H ) and zero emissions of greenhouse gas (CO ). However, significant mass transport resistances in the interface region of the membrane electrode assemblies (MEAs), between the membrane and the catalyst layers remains a barrier to achieving MEAs with high power densities and long-term stabilities. Here, a 3D-interfacial zipping concept is presented to overcome this challenge.

View Article and Find Full Text PDF
Article Synopsis
  • Highly conductive anion-exchange membranes (AEMs) are important for energy storage and conversion, but traditional AEMs struggle with low conductivity due to rigid bonding with counterions like HCO- or Br-.* -
  • The study introduces a new polyrotaxane AEM that uses free-moving phosphonium cations which enhance mobility and conductivity, as demonstrated through various scientific methods.* -
  • This innovative approach achieved impressive conductivity of 105 mS/cm at 90°C with a lower ion-exchange capacity, paving the way for new applications in ion conduction technologies.*
View Article and Find Full Text PDF

Objective: Polycystin-1 (PC-1) is a protein encoded by the gene of polycystic kidney disease-1 (PKD-1). This study was designed to investigate the regulatory mechanisms of PC-1 on phenotypes of aortic vascular smooth muscle cells (VSMCs) and functions of extracellular matrix (ECM) in thoracic aortic dissection (TAD).

Methods: Aortic tissues from patients with TAD and healthy controls were collected, primary aortic VSMCs were also isolated.

View Article and Find Full Text PDF

Due to lactose intolerance, there is a growing need for lactose-free or low-lactose dairy products. Herein, a combination of three membrane technologies (UF, electrodialysis (ED), and nanofiltration (NF)) was used as a novel green technology to replace the enzymatic preparation of low-lactose milk powder in the traditional industry. In which, large molecules such as proteins and fats are first retained using UF, mineral salt was intercepted and re-added into milk by electrodialysis, and finally, lactose is recovered by NF.

View Article and Find Full Text PDF

Although much progress has been made in the diagnosis and treatment of thoracic aortic dissection (TAD), the overall morbidity and mortality rates of TAD are still high. Therefore, the molecular pathogenesis and etiology of TAD need to be elucidated. In this study, we found that histone deacetylase 1 (HDAC1) expression is dramatically higher in the aortic wall of patients with TAD (than that in a normal group) and negatively correlates with the levels of the vascular smooth muscle cell (SMC) contractile-phenotype markers.

View Article and Find Full Text PDF