Publications by authors named "Yu-zhi Guo"

The pronounced topographical differences, giving rise to numerous water bodies, also endow these formations with substantial hydraulic gradients, leading to pronounced groundwater discharge within their low-lying, natural reservoir settings. However, the dynamics of groundwater discharge in reservoirs and their impact on greenhouse gas (GHG) production and emission under different conditions remain unclear. This study focuses on a reservoir in southeastern China, where we conducted seasonal field observations alongside microcosm incubation experiments to elucidate the relationship between greenhouse gas emissions and groundwater discharge.

View Article and Find Full Text PDF

Peatlands are vital in the global carbon cycle, acting as significant sinks for carbon and releasing methane (CH) and carbon dioxide (CO) into the atmosphere. However, the complex interactions between environmental factors and the microbial communities responsible for these greenhouse gas emissions remain insufficiently understood. To address this knowledge gap, a pilot-scale mesocosm study was conducted to assess the impact of different terminal electron acceptors (TEAs), including sulfate (SO ), humic acid (HA), and goethite, on CH and CO emissions and microbial community structures in peatlands.

View Article and Find Full Text PDF
Article Synopsis
  • Atmospheric deposition contributes a steady iron source for peatlands, which influences methane (CH₄) production, although the mechanisms behind this are not fully understood.
  • A microcosm experiment on peat sediments from the Qinghai-Tibet Plateau showed that the reduction of ferrihydrite (a type of iron oxide) increased CH₄ production by 30 times compared to a control.
  • Results indicated that ferrihydrite reduction enhances the breakdown of dissolved organic matter, increases certain microbial populations, and thereby promotes methane generation in peat environments.
View Article and Find Full Text PDF

Northern peatlands are important carbon pools; however, differences in the structure and function of microbiomes inhabiting contrasting geochemical zones within these peatlands have rarely been emphasized. Using 16S rRNA gene sequencing, metagenomic profiling, and detailed geochemical analyses, we investigated the taxonomic composition and genetic potential across various geochemical zones of a typical northern peatland profile in the Changbai Mountains region (Northeastern China). Specifically, we focused on elucidating the turnover of organic carbon, sulfur (S), nitrogen (N), and methane (CH).

View Article and Find Full Text PDF
Article Synopsis
  • Some waste that contains lead is not thrown away properly and can get into the soil and water, causing problems.
  • A new method called microbial-induced carbonate precipitation (MICP) helps stop lead from moving further into the soil by using special chemicals that change how lead behaves.
  • Researchers found that when soil is treated with a substance called urea, it creates helpful bacteria and slows down how quickly lead moves in the soil, making it safer.
View Article and Find Full Text PDF

Surface-enhanced Raman scattering (SERS) technology has been widely recognized for its remarkable sensitivity in biochip development. This study presents a novel sandwich immunoassay that synergizes SERS with magnetoplasmonic nanoparticles (MPNs) to improve sensitivity. By taking advantage of the unique magnetism of these nanoparticles, we further enhance the detection sensitivity of SERS biochips through the applied magnetic field.

View Article and Find Full Text PDF

Peatlands account for a significant fraction of the global carbon stock. However, the complex interplay of abiotic and biotic factors governing anaerobic carbon mineralization in response to warming remains unclear. In this study, peat sediments were collected from a typical northern peatland-Changbai Mountain to investigate the behavior and mechanism of anaerobic carbon mineralization in response to depth (0-200 cm) and temperature (5 °C, 15 °C and 20 °C), by integrating geochemical and microbial analysis.

View Article and Find Full Text PDF

Although gut microbes can affect the accumulation and metabolism of arsenic (As), the microbes contributing to these processes remain largely unknown. Therefore, this study aimed to investigate the bioaccumulation and biotransformation of arsenate [As(V)] and arsenobetaine (AsB) in mice with a disordered gut microbiome. We used cefoperazone (Cef) to construct a mouse model of gut microbiome disruption along with 16S rRNA sequencing to elucidate the effect of gut microbiome destruction on the biotransformation and bioaccumulation of As(V) and AsB.

View Article and Find Full Text PDF

The occurrence of imbalanced heavy metals concentration due to anthropogenic hindrances in the aquatic and terrestrial environment has become a potential risk to life after circulating through different food chains. The microbial-induced carbonate precipitation (MICP) method has gradually received great attention from global researchers but the underlying mechanism of heavy metal mineralization is not well-understood and challenging, limiting the applications in wastewater engineering. This paper reviews the metabolic pathways, mechanisms, operational factors, and mathematical/modeling approaches in the MICP process.

View Article and Find Full Text PDF

We examined the effects of representative clay minerals, montmorillonite (M) and kaolin (K), on perfluorooctanoic acid (PFOA) transport under saturated conditions. Results showed that low amounts of M or K addition increased and high addition amounts reduced PFOA retardation in quartz sand during the transport. With increasing addition of clay minerals (0-50%, weight ratio), the retardation factor of the M-added system increased from 1.

View Article and Find Full Text PDF
Article Synopsis
  • Peatlands play a crucial role in global carbon and nitrogen cycles, holding 15 to 30% of the world's soil carbon stock, but their varying chemistry complicates global carbon inventories.
  • A study analyzed 436 peat cores from 24 countries, finding significant differences in carbon, nitrogen, and organic matter content between different peatland categories, mainly influenced by pH levels.
  • The results indicate predictable differences in carbon and organic matter concentrations across peatland types, which can help enhance future assessments of global peatland carbon and nitrogen stocks.
View Article and Find Full Text PDF

Abstrct: Metabonomics is a relative discipline that develops after genomics and proteomics, and it is an important component of systems biology. It uses high-throughput and high-sensitivity instruments to perform qualitative and quantitative analysis of all metabolic components in specific biological samples under limited conditions and combines with multivariate statistics to analyze and process the data to obtain information about physiological, pathological or toxicological changes in organisms. In recent years, because of the complicated mechanism of substance abuse and the continuous emergence of new psychoactive substances, metabonomics is increasingly used in substance abuse research.

View Article and Find Full Text PDF

(Kom.) Nakai is a well-known medicinal hemiparasite widely distributed in Asia. The synthesis and accumulation of its metabolites are affected by both environmental factors and the host plants, while the latter of which is usually overlooked.

View Article and Find Full Text PDF

Endocrine-disrupting compounds (EDCs), as well as microplastics, have drawn global attention due to their presence in the aquatic ecosystem and persistence in wastewater treatment plants (WWTPs). In the present study, for simultaneous bio-removal of two EDCs, 17α-ethinylestradiol (EE2), bisphenol A (BPA), and a microplastic, polypropylene (PP) four kinds of periphytic biofilms were employed. Additionally, the effect of humic acid (HA) on the removal efficacy of these biofilms was evaluated.

View Article and Find Full Text PDF

Peat bogs, which cover only 3% of the global land surface, store about 30% of the global soil carbon (C), and are important carbon pools in terrestrial ecosystems. Dissolved organic matter (DOM) is an important part of carbon cycle in peatland, and also an important participant in biogeo-chemical process of peat. The variation of redox ability of DOM and inorganic ions in surface water, groundwater, and pore water of two sampling peatland (minerotrophic fen, LB; ombrotrophic bog, OS) were analyzed using novel electrochemical method and stable carbon isotope.

View Article and Find Full Text PDF

Greenhouse gases (GHGs; particularly, CO, CH, and NO) emission from wastewater treatment systems (WWTS) is one of the inevitable concerns for sustainable development. This indicator is directly linked with the carbon footprint and potential impacts of WWTS on climate change. In this view, various modeling, design, and operational tools have been introduced to mitigate the WWTS associated GHGs, at regional and global scales.

View Article and Find Full Text PDF

To reconstruct the deposition rate of polychlorinated biphenyls (PCBs) in different historical periods and to examine the temporal and spatial trend of PCBs pollution, we analyzed the changes of PCBs concentration and deposition rate in peat cores and lake sediments, and evaluated the suitability of peat cores and lake sediments for studying PCBs deposition trend. Through the dating analysis of all samples, we found that peat bog could well record the historical sedimentation of PCBs. PCBs did not degrade in peat, and it was thus feasible to use peatland to examine the settlement of PCBs.

View Article and Find Full Text PDF

Peatlands cover a small portion of the Earth's land surface but hold ~30% of soil carbon (C) globally. However, few studies have focused on the early stage of peatland development, which is a key stage in the initial C sink function of peatlands. An immature peatland is vulnerable to changes in environmental conditions, e.

View Article and Find Full Text PDF

Cadmium (Cd) is a harmful heavy metal that can cause potent environmental and health hazards at different trophic levels through food chain. Cd is relatively non-biodegradable and persists for a long time in the environment. Considering the potential toxicity and non-biodegradability of Cd in the environment as well as its health hazards, this is an urgent issue of international concern that needs to be addressed by implicating suitable remedial approaches.

View Article and Find Full Text PDF

The deteriorating water quality (WQ) of the sacred north-flowing perennial Indian River, Ganga was a serious concern in recent decades for population adjoining to the river and policy planners. The present evaluation attempts to assess the long-term (1989-2016) physiochemical characteristics of WQ of river Ganga at five upstream locations (Uttarkashi, Tehri, Rudraprayag, Devprayag, and Rishikesh) of Uttarakhand, India using comprehensive pollution index (CPI) and environmetrics (PCA and CA). These methods were used to categorize, summarize expensive datasets, and grouping the similar polluted areas along the river stretches.

View Article and Find Full Text PDF

-/-2-(2-Hydroxypropanamido)-5-trifluoromethyl benzoic acid (-/-HFBA), as a novel COX inhibitor, was firstly reported to have remarkable anti-inflammatory and antiplatelet aggregation activities by our group. In our previous study, stereoselective differences in pharmacokinetics were found between HFBA enantiomers after oral and intravenous administration of each enantiomer to rats. The discrepancies might be associated with the excretion and metabolism of the two enantiomers.

View Article and Find Full Text PDF

R-/S-2-(2-hydroxypropanamido) benzoic acid (R-/S-HPABA), marine-derived anti-inflammatory antiplatelet drugs, were initially synthesised in our group. However, preliminary research showed that R-/S-HPABA were eliminated rapidly because of extensive hydroxylation metabolism of phenyl ring in vivo. In order to reduce significant hydroxylation metabolism to improve pharmacological activity and bioavailability, trifluoromethyl group was incorporated into R-/S-HPABA to synthesise R-/S-2-(2-hydroxypropanamido)-5-trifluoromethyl benzoic acid (R-/S-HFBA), respectively.

View Article and Find Full Text PDF

Marine copepods play an important role in transferring mercury to higher trophic levels in aquatic ecosystems. Exposure time is an important environmental parameter that potentially influences the bioaccumulation and biomagnification of Hg in copepods, which increases the uncertainty in risk assessments of Hg in food chains. In the present study, we employed the radiotracer technique to evaluate the efflux behavior of inorganic mercury [Hg(II)] and methylmercury (MeHg), and the effects of exposure time in a population of Tigriopus japonicus copepods.

View Article and Find Full Text PDF

Four new species of the genus Miridiba Reitter, 1902 from South China are described and illustrated: Miridiba (Miridiba) bannaensis Gao Fang, new species, M. (M.) kuatunensis Gao Fang, new species, M.

View Article and Find Full Text PDF