Publications by authors named "Yu-ya Mitsuki"

Unlabelled: HIV is transmitted most efficiently from cell to cell, and productive infection occurs mainly in activated CD4 T cells. It is postulated that HIV exploits immunological synapses formed between CD4 T cells and antigen-presenting cells to facilitate the targeting and infection of activated CD4 T cells. This study sought to evaluate how the presence of the HIV envelope (Env) in the CD4 T cell immunological synapse affects synapse formation and intracellular signaling to impact the downstream T cell activation events.

View Article and Find Full Text PDF

HIV infection leads to CD4 helper T cell (Th) loss, but not all Th cells are equally depleted. The contribution of other immune cells in the Th depletion also remains unclear. This study investigates HIV transmission from monocyte-derived dendritic cells (MDDCs) vs.

View Article and Find Full Text PDF

Human immunodeficiency virus type 1 (HIV-1) reporter cell lines are critical tools for drug development. However, one disadvantage of HIV-1 reporter cell lines is that reductions in reporter gene activity need to be normalized to cytotoxicity, i.e.

View Article and Find Full Text PDF

Humanized mice reconstituted with human hematopoietic cells have been developed as an experimental animal model for human immunodeficiency virus type 1 (HIV-1) infection. Myeloablative irradiation is usually performed to augment the engraftment of donor hematopoietic stem cells (HSCs) in recipient mice; however, some mouse strains are susceptible to irradiation, making longitudinal analysis difficult. We previously attempted to construct humanized NOD/SCID/JAK3(null) (hNOJ) mice, which were not irradiated prior to human HSC transplantation.

View Article and Find Full Text PDF

Measles virus (MV) infection in children harboring human immunodeficiency virus type 1 (HIV-1) is often fatal, even in the presence of neutralizing antibodies; however, the underlying mechanisms are unclear. Therefore, the aim of the present study was to examine the interaction between HIV-1 and wild-type MV (MVwt) or an MV vaccine strain (MVvac) during dual infection. The results showed that the frequencies of MVwt- and MVvac-infected CD4(+) T cells within the resting peripheral blood mononuclear cells (PBMCs) were increased 3- to 4-fold after HIV-1 infection, and this was associated with a marked upregulation of signaling lymphocytic activation molecule (SLAM) expression on CD4(+) T cells but not on CD8(+) T cells.

View Article and Find Full Text PDF

Flow cytometric analysis is a reliable and convenient method for investigating molecules at the single cell level. Previously, recombinant human immunodeficiency virus type 1 (HIV-1) strains were constructed that express a fluorescent reporter, either enhanced green fluorescent protein, or DsRed, which allow the monitoring of HIV-1-infected cells by flow cytometry. The present study further investigated the potential of these recombinant viruses in terms of whether the HIV-1 fluorescent reporters would be helpful in evaluating viral replication based on fluorescence intensity.

View Article and Find Full Text PDF

The H5N1 subtype of the highly pathogenic (HP) avian influenza virus has been recognized for its ability to cause serious pandemics among humans. In the present study, new monoclonal antibodies (mAbs) against viral proteins were established for the immunological detection of H5N1 influenza virus for research and diagnostic purposes. B-cell hybridomas were generated from mice that had been hyperimmunized with purified A/Vietnam/1194/2004 (NIBRG-14) virion that had been inactivated by UV-irradiation or formaldehyde.

View Article and Find Full Text PDF

Objective: To determine whether HIV-1-specific CD4 T cells with proliferative capacity are eliminated or functionally defective because of HIV-1 reactivation.

Design: The loss of proliferative capacity by HIV-1-specific CD4 T cells compromises the host's ability to maintain protective immunity against HIV-1 and is a hallmark of disease progression. We used a recombinant lentivirus encoding an HIV-specific short hairpin (sh)RNA (Lenti shNef366) with known HIV-inhibitory activity to analyze the functional state of HIV-1-specific CD4 T cells.

View Article and Find Full Text PDF

Dendritic cells (DCs) are essential antigen-presenting cells for the induction of T cell immunity against HIV. On the other hand, due to the susceptibility of DCs to HIV infection, virus replication is strongly enhanced in DC-T cell interaction via an immunological synapse formed during the antigen presentation process. When HIV-1 is isolated from individuals newly infected with the mixture of R5 and X4 variants, R5 is predominant, irrespective of the route of infection.

View Article and Find Full Text PDF

Dendritic cells (DCs) are professional antigen-presenting cells that possess a unique capacity to cross-present exogenous antigens efficiently to CD8(+) T cells. We previously demonstrated that monocyte-derived DCs (MDDCs) pulsed with yeast-derived HIV-1 Gag virus-like particles (VLPs) were able to activate Gag-specific CD8(+) T cells from HIV-1-infected individuals. Yeast VLPs are abundantly mannosylated (high-mannose type: HmVLPs) and are highly immunogenic.

View Article and Find Full Text PDF

In response to SARS-CoV infection, neutralizing antibodies are generated against the Spike (S) protein. Determination of the active regions that allow viral escape from neutralization would enable the use of these antibodies for future passive immunotherapy. We immunized mice with UV-inactivated SARS-CoV to generate three anti-S monoclonal antibodies, and established several neutralization escape mutants with S protein.

View Article and Find Full Text PDF

The demand for rapid and simple development of a vaccine against a newly emerging infectious disease is increasing worldwide. We previously revealed that UV-inactivated severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) virions (UV-V) elicited high levels of humoral immunity and a weak Th0 response in mice immunized subcutaneously. To ensure the safety of such a whole inactivated SARS-CoV vaccine, we additionally treated the UV-V vaccine with formalin, resulting in the UV-F-V vaccine.

View Article and Find Full Text PDF