Transition metal dichalcogenides display a high technological potential due to their wide range of electronic ground states. Here, we unveil that by tuning hydrostatic pressure P, a cascade of electronic phase transitions can be induced in the few-layer transition metal dichalcogenide 1T'-WS. As P increases, we observe the suppression of superconductivity with the concomitant emergence of an anomalous Hall effect (AHE) at GPa.
View Article and Find Full Text PDFThe interplay of topology, magnetism, and correlations gives rise to intriguing phases of matter. In this study, through state-of-the-art angle-resolved photoemission spectroscopy, density functional theory, and dynamical mean-field theory calculations, we visualize a fourfold degenerate Dirac nodal line at the boundary of the bulk Brillouin zone in the antiferromagnet YMnGe. We further demonstrate that this gapless, antiferromagnetic Dirac nodal line is enforced by the combination of magnetism, space-time inversion symmetry, and nonsymmorphic lattice symmetry.
View Article and Find Full Text PDFKagome magnets provide a fascinating platform for a plethora of topological quantum phenomena, in which the delicate interplay between frustrated crystal structure, magnetization, and spin-orbit coupling (SOC) can engender highly tunable topological states. Here, utilizing angle-resolved photoemission spectroscopy, the Weyl lines are directly visualized with strong out-of-plane dispersion in the A-A stacked kagome magnet GdMn Sn . Remarkably, the Weyl lines exhibit a strong magnetization-direction-tunable SOC gap and binding energy tunability after substituting Gd with Tb and Li, respectively.
View Article and Find Full Text PDFKagome materials often host exotic quantum phases, including spin liquids, Chern gap, charge density wave, and superconductivity. Existing scanning microscopy studies of the kagome charge order have been limited to nonkagome surface layers. Here, we tunnel into the kagome lattice of FeGe to uncover features of the charge order.
View Article and Find Full Text PDFThe electronic instabilities in CsVSb are believed to originate from the V 3d-electrons on the kagome plane, however the role of Sb 5p-electrons for 3-dimensional orders is largely unexplored. Here, using resonant tender X-ray scattering and high-pressure X-ray scattering, we report a rare realization of conjoined charge density waves (CDWs) in CsVSb, where a 2 × 2 × 1 CDW in the kagome sublattice and a Sb 5p-electron assisted 2 × 2 × 2 CDW coexist. At ambient pressure, we discover a resonant enhancement on Sb L-edge (2s→5p) at the 2 × 2 × 2 CDW wavevectors.
View Article and Find Full Text PDFA hallmark of strongly correlated quantum materials is the rich phase diagram resulting from competing and intertwined phases with nearly degenerate ground-state energies. A well-known example is the copper oxides, in which a charge density wave (CDW) is ordered well above and strongly coupled to the magnetic order to form spin-charge-separated stripes that compete with superconductivity. Recently, such rich phase diagrams have also been shown in correlated topological materials.
View Article and Find Full Text PDFRoom-temperature realization of macroscopic quantum phases is one of the major pursuits in fundamental physics. The quantum spin Hall phase is a topological quantum phase that features a two-dimensional insulating bulk and a helical edge state. Here we use vector magnetic field and variable temperature based scanning tunnelling microscopy to provide micro-spectroscopic evidence for a room-temperature quantum spin Hall edge state on the surface of the higher-order topological insulator BiBr.
View Article and Find Full Text PDFIntertwining quantum order and non-trivial topology is at the frontier of condensed matter physics. A charge-density-wave-like order with orbital currents has been proposed for achieving the quantum anomalous Hall effect in topological materials and for the hidden phase in cuprate high-temperature superconductors. However, the experimental realization of such an order is challenging.
View Article and Find Full Text PDFObjective: Phenotypic switching of vascular smooth muscle cells (VSMCs) plays a critical role in atherosclerosis, vascular restenosis, and hypertension. Choline exerts cardioprotective effects; however, little is known about its effects on VSMC phenotypic switching and vascular remodeling. Here, we investigated whether choline modulates VSMC phenotypic changes and explored the underlying mechanisms.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
August 2019
Obesity is an important risk factor for cardiovascular diseases, which can lead to a variety of cardiovascular diseases including myocardial remodeling. Obesity may induce myocardial dysfunction by affecting hemodynamics, inducing autonomic imbalance, adipose tissue dysfunction, and mitochondrial dyshomeostasis. The key necessary biochemical functions for metabolic homeostasis are performed in mitochondria, and mitochondrial homeostasis is considered as one of the key determinants for cell viability.
View Article and Find Full Text PDFAims: Obesity is associated with increased cardiovascular morbidity and mortality. It is accompanied by augmented O-linked β-N-acetylglucosamine (O-GlcNAc) modification of proteins via increasing hexosamine biosynthetic pathway (HBP) flux. However, the changes and regulation of the O-GlcNAc levels induced by obesity are unclear.
View Article and Find Full Text PDFAims: Cardiac hypertrophy is characterized by a shift in metabolic substrate utilization, but the molecular events underlying the metabolic remodelling remain poorly understood. We explored metabolic remodelling and mitochondrial dysfunction in cardiac hypertrophy and investigated the cardioprotective effects of choline.
Methods And Results: The experiments were conducted using a model of ventricular hypertrophy by partially banding the abdominal aorta of Sprague Dawley rats.
ACS Appl Mater Interfaces
March 2018
Along with an unexpected conducting interface between nonmagnetic insulating perovskites LaAlO and SrTiO (LaAlO/SrTiO), striking interfacial magnetisms have been observed in LaAlO/SrTiO heterostructures. Interestingly, the strength of the interfacial magnetic moment is found to be dependent on oxygen partial pressures during the growth process. This raises an important, fundamental question on the origin of these remarkable interfacial magnetic orderings.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
April 2018
Cardiac hypertrophy is associated with autonomic imbalance, characterized by enhanced sympathetic activity and withdrawal of parasympathetic control. Increased parasympathetic function improves ventricular performance. However, whether pyridostigmine, a reversible acetylcholinesterase inhibitor, can offset cardiac hypertrophy induced by pressure overload remains unclear.
View Article and Find Full Text PDFCalcium overload is one of the important mechanisms of cardiovascular disease. Endoplasmic reticulum is an important organelle which regulates intracellular calcium homeostasis by uptake, storage and mobilization of calcium. So it plays a critical role in regulation of intracellular calcium homeostasis.
View Article and Find Full Text PDF