Publications by authors named "Yu-ting Alex Chiang"

p21-activated protein kinase-1 (Pak1) plays a role in insulin secretion and glucagon-like peptide-1 (GLP-1) production. Pak1(-/-) mice were found to carry a defect in ip pyruvate tolerance test (IPPTT), leading us to speculate whether Pak1 represses hepatic gluconeogenesis. We show here that the defect in IPPTT became more severe in aged Pak1(-/-) mice.

View Article and Find Full Text PDF

p21-Activated protein kinases (PAKs) are centrally involved in a plethora of cellular processes and functions. Their function as effectors of small GTPases Rac1 and Cdc42 has been extensively studied during the past two decades, particularly in the realms of cell proliferation, apoptosis, and hence tumorigenesis, as well as cytoskeletal remodeling and related cellular events in health and disease. In recent years, a large number of studies have shed light onto the fundamental role of group I PAKs, most notably PAK1, in metabolic homeostasis.

View Article and Find Full Text PDF

Certain "degradation" products of GLP-1 were found to possess beneficial effects on metabolic homeostasis. Here, we investigated the function of the COOH-terminal fragment of GLP-1, the nonapeptide GLP-1(28-36)amide, in hepatic glucose metabolism. C57BL/6 mice fed a high-fat diet (HFD) for 13 wk were injected intraperitoneally with GLP-1(28-36)amide for 6 wk.

View Article and Find Full Text PDF

Certain single nucleotide polymorphisms (SNPs) in transcription factor 7-like 2 (TCF7L2) are strongly associated with the risk of type 2 diabetes. TCF7L2 and β-catenin (β-cat) form the bipartite transcription factor cat/TCF in stimulating Wnt target gene expression. cat/TCF may also mediate the effect of other signaling cascades, including that of cAMP and insulin in cell-type specific manners.

View Article and Find Full Text PDF

The Wnt signaling pathway was initially discovered for its role in tumorigenesis and the development of Drosophila and other eukaryotic organisms. The key effector of this pathway, the bipartite transcription factor β-cat/TCF, is formed by free β-catenin (β-cat) and a TCF protein, including TCF7L2. Extensive recent investigations have highlighted the role of the Wnt signaling pathway in metabolic homeostasis and its implication in diabetes and other metabolic diseases.

View Article and Find Full Text PDF