Publications by authors named "Yu-jen Chou"

Article Synopsis
  • Segmental bone defects can occur due to various reasons like trauma, infections, or tumor removals, and hydrogels are being explored for their potential in bone regeneration due to their customizable properties.
  • Despite their advantages, hydrogels face challenges such as weak mechanical strength and quick release of growth factors, which limit their use in clinical settings.
  • This study developed a novel injectable hydrogel by incorporating lyophilized platelet-rich fibrin into a gelatin/hyaluronic acid matrix, showing promising results for bone repair in rabbit models, indicating potential for future clinical applications.
View Article and Find Full Text PDF

Bioactive glass is a potential biomaterial for bone reconstruction owing to its superior bioactivity and non-toxicity. Yet, the absence of a circulatory system to carry waste and nutrients is a key issue with biomaterials implanted in the body. Thus the development of functional and vascularized new tissue requires the development of angiogenesis, which involves the formation of new blood vessels.

View Article and Find Full Text PDF

Bioactive glass (BG) has been regarded as an excellent candidate for biomedical applications due to its superior properties of bioactivity, biocompatibility, osteoconductivity and biodegradability. Thus, in this study, we aimed to fabricate drug carriers that were capable of loading therapeutic antibiotics while promoting bone regeneration using macroporous BG microspheres, prepared by a spray drying method. Characterizations of particle morphology and specific surface area were carried out via scanning electron microscopy and nitrogen adsorption/desorption isotherm.

View Article and Find Full Text PDF

Bioactive glass (BG) is considered to be one of the most remarkable materials in the field of bone tissue regeneration due to its superior bioactivity. In this study, both un-treated and polyethylene glycols (PEG)-treated BG particles were prepared using a spray pyrolysis process to study the correlation between particle morphology and degradation behavior. The phase compositions, surface morphologies, inner structures, and specific surface areas of all BG specimens were examined by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption/desorption, respectively.

View Article and Find Full Text PDF

In this study, we demonstrate the fabrication of Y-doped bioactive glass (BG), which is proposed as a potential material for selective internal radiotherapy applications. Owing to its superior bioactivity and biodegradability, it overcomes the problem of yttrium aluminosilicate spheres that remain in the host body for a long duration after treatment. The preparation of Y-doped BG powders were carried out using a spray pyrolysis method.

View Article and Find Full Text PDF

Eu-doped amorphous gehlenite phosphors with various morphologies were synthesized using spray pyrolysis. Along with un-treated precursor, two commonly used pore-forming agents, polyethylene glycol and hydrogen peroxide, were applied to achieve porous and hollow particle structures. The phase compositions, surface morphologies, inner structures and photoluminescence properties of the resulting phosphors were examined by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and fluorescence spectrometry.

View Article and Find Full Text PDF

SiO₂-CaO-P₂O₅-based mesoporous bioactive glasses (MBGs) were synthesized by spray pyrolysis in this study. Three commonly used non-ionic tri-block copolymers (L121, P123, and F127) with various lengths of hydrophilic chains were applied as structural templates to achieve different pore sizes. A mesoporous structure was observed in each as-prepared specimen, and the results showed that the L121-treated MBG had the largest pore size.

View Article and Find Full Text PDF

To enhance the detection sensitivity of target clinical protein biomarkers, a simple and rapid nanoprobe-based immuno-affinity mass spectrometry assay employing biocompatible monodisperse magnetic nanoparticles (MNPs) is reported herein. The MNPs were synthesized via a streamlined protocol that includes (a) fabrication of core MNPs using the thermal decomposition method to minimize aggregation, (b) surface protection by gold coating (MNP@Au) and surfactant coating using MNP@IGEPAL to improve hydrophilicity, and lastly, (c) oriented functionalization of antibodies to maximize immuno-affinity. The enrichment performances of the monodisperse MNPs for the C-reactive protein (CRP) serum biomarker were then evaluated and compared with aggregated magnetic nanoparticles synthesized from the conventional co-precipitation method (MNP(CP)).

View Article and Find Full Text PDF

In this study, bioactive glass (BG) particles were synthesized directly using spray pyrolysis (SP). Since the bioactivity of glass particles is well correlated with their chemical composition, how to obtain homogenous bioactive glass becomes an important issue. For SP, the main reason for chemical inhomogeneity was considered to be caused by the difference in the precipitation speed of each precursor.

View Article and Find Full Text PDF

Seeing the articulatory gestures of the speaker ("speech reading") enhances speech perception especially in noisy conditions. Recent neuroimaging studies tentatively suggest that speech reading activates speech motor system, which then influences superior-posterior temporal lobe auditory areas via an efference copy. Here, nineteen healthy volunteers were presented with silent videoclips of a person articulating Finnish vowels /a/, /i/ (non-targets), and /o/ (targets) during event-related functional magnetic resonance imaging (fMRI).

View Article and Find Full Text PDF

As the number of blogs increases dramatically, these online forums have become important media people use to share feelings and information. Previous research of blogs focuses on writers (i.e.

View Article and Find Full Text PDF