Publications by authors named "Yu-ichiro Nakajima"

Article Synopsis
  • The study investigates how specific regenerative genes from highly regenerative organisms can affect low regenerative animals, focusing on Drosophila.
  • Researchers found that while these genes hinder tissue regeneration in the developing wings, they enhance lifespan and intestinal stem cell activity in older flies.
  • The results indicate that introducing these genes can lead to better stem cell functionality and improved health during aging, showing potential for regenerative medicine applications.*
View Article and Find Full Text PDF

Regeneration is the remarkable phenomenon through which an organism can regrow lost or damaged parts with fully functional replacements, including complex anatomical structures, such as limbs. In 2019, Development launched its 'Model systems for regeneration' collection, a series of articles introducing some of the most popular model organisms for studying regeneration in vivo. To expand this topic further, this Perspective conveys the voices of five expert biologists from the field of regenerative biology, each of whom showcases some less well-known, but equally extraordinary, species for studying regeneration.

View Article and Find Full Text PDF

Blastema formation is a crucial process that provides a cellular source for regenerating tissues and organs. While bilaterians have diversified blastema formation methods, its mechanisms in non-bilaterians remain poorly understood. Cnidarian jellyfish, or medusae, represent early-branching metazoans that exhibit complex morphology and possess defined appendage structures highlighted by tentacles with stinging cells (nematocytes).

View Article and Find Full Text PDF

Patient-derived xenograft (PDX) is an emerging tool established in immunodeficient vertebrate models to assess individualized treatments for cancer patients. Current xenograft models are deficient in adaptive immune systems. However, the precise role of the innate immunity in the xenograft models is unknown.

View Article and Find Full Text PDF

As the sister group to bilaterians, cnidarians stand in a unique phylogenetic position that provides insight into evolutionary aspects of animal development, physiology, and behavior. While cnidarians are classified into two types, sessile polyps and free-swimming medusae, most studies at the cellular and molecular levels have been conducted on representative polyp-type cnidarians and have focused on establishing techniques of genetic manipulation. Recently, gene knockdown by delivery of short hairpin RNAs into eggs via electroporation has been introduced in two polyp-type cnidarians, Nematostella vectensis and Hydractinia symbiolongicarpus, enabling systematic loss-of-function experiments.

View Article and Find Full Text PDF

Cnidarians, including sea anemones, corals, and jellyfish, exhibit diverse morphology and lifestyles that are manifested in sessile polyps and free-swimming medusae. As exemplified in established models such as Hydra and Nematostella, stem cells and/or proliferative cells contribute to the development and regeneration of cnidarian polyps. However, the underlying cellular mechanisms in most jellyfish, particularly at the medusa stage, are largely unclear, and, thus, developing a robust method for identifying specific cell types is critical.

View Article and Find Full Text PDF

Adult tissues in Metazoa dynamically remodel their structures in response to environmental challenges including sudden injury, pathogen infection, and nutritional fluctuation, while maintaining quiescence under homoeostatic conditions. This characteristic, hereafter referred to as adult tissue plasticity, can prevent tissue dysfunction and improve the fitness of organisms in continuous and/or severe change of environments. With its relatively simple tissue structures and genetic tools, studies using the fruit fly have provided insights into molecular mechanisms that control cellular responses, particularly during regeneration and nutrient adaptation.

View Article and Find Full Text PDF

Medusozoans, the Cnidarian subphylum, have multiple life stages including sessile polyps and free-swimming medusae or jellyfish, which are typically bell-shaped gelatinous zooplanktons that exhibit diverse morphologies. Despite having a relatively complex body structure with well-developed muscles and nervous systems, the adult medusa stage maintains a high regenerative ability that enables organ regeneration as well as whole body reconstitution from the part of the body. This remarkable regeneration potential of jellyfish has long been acknowledged in different species; however, recent studies have begun dissecting the exact processes underpinning regeneration events.

View Article and Find Full Text PDF

The Scrib module proteins, Scrib, Dlg, and Lgl, are conserved regulators of cell polarity in diverse biological contexts. Originally discovered as neoplastic tumor suppressors in the fruit fly Drosophila melanogaster, disruption of Scrib module components leads to tumorigenesis in mammalian epithelia and is associated with human cancers. With multiple protein interacting domains, Scrib module proteins function as determinants of basolateral identity in epithelial cells with apical-basal polarity while acting as signaling platform scaffold proteins.

View Article and Find Full Text PDF

The Drosophila melanogaster wing imaginal disc is an epithelial sac that exhibits dramatic tissue growth during the larval stage. With its simple morphology and accessibility of genetic tools, studies using the wing disc have contributed to the understanding of the mechanisms of epithelial homeostasis including the control of mitotic spindle orientation. This chapter describes a detailed protocol for analyzing epithelial architecture and planar orientation of the mitotic spindle in the wing disc epithelium.

View Article and Find Full Text PDF

Jellyfish have existed on the earth for around 600 million years and have evolved in response to environmental changes. Hydrozoan jellyfish, members of phylum Cnidaria, exist in multiple life stages, including planula larvae, vegetatively-propagating polyps, and sexually-reproducing medusae. Although free-swimming medusae display complex morphology and exhibit increase in body size and regenerative ability, their underlying cellular mechanisms are poorly understood.

View Article and Find Full Text PDF

Proper orientation of the mitotic spindle is essential for cell fate determination, tissue morphogenesis, and homeostasis. During epithelial proliferation, planar spindle alignment ensures the maintenance of polarized tissue architecture, and aberrant spindle orientation can disrupt epithelial integrity. Nevertheless, in vivo mechanisms that restrict the mitotic spindle to the plane of the epithelium remain poorly understood.

View Article and Find Full Text PDF

Polarized epithelia are a foundation of organ and appendage structures throughout Metazoa and serve as a physical barrier to preserve physiological functions. In proliferating epithelia, planar cell division occurs by orienting the mitotic spindle within the plane of the epithelium to ensure tissue organization. Conversely, loss of tissue architecture is a hallmark of carcinoma, and aberrant spindle orientation is hypothesized to contribute to tissue disorganization through dysplasia and cell dissemination.

View Article and Find Full Text PDF

Caspases are at the core of executing apoptosis by orchestrating cellular destruction with proteolytic cascades. Caspase-mediated proteolysis also controls diverse nonlethal cellular activities such as proliferation, differentiation, cell fate decision, and cytoskeletal reorganization. During the last decade or so, genetic studies of Drosophila have contributed to our understanding of the in vivo mechanism of the non-apoptotic cellular responses in developmental contexts.

View Article and Find Full Text PDF

Widely implicated in human disease, abnormal cellular cysts reflect dramatic defects in the maintenance of epithelial integrity. A new study reports that epithelial cysts may arise as a surprisingly general consequence of clonal defects in the specification of cell identity.

View Article and Find Full Text PDF

The Drosophila neoplastic tumor suppressor Lethal giant larvae (Lgl) regulates apico-basal polarity in epithelia as well as the asymmetric segregation of cell fate in neural progenitors. Two new studies uncover a new facet of its regulation in epithelia, where Aurora-dependent phosphorylation triggers Lgl dissociation from the basolateral cortex to facilitate planar orientation of the mitotic spindle.

View Article and Find Full Text PDF

Caspases, which constitute a family of cysteine proteases, are highly conserved in multicellular organisms and function as a central player in apoptosis. The detection of apoptosis is intrinsically difficult because dying cells are rapidly removed from tissues by phagocytosis. Thus, the development of a method for detecting caspase activation is critical for the in vivo study of apoptosis.

View Article and Find Full Text PDF

During epithelial cell proliferation, planar alignment of the mitotic spindle coordinates the local process of symmetric cell cleavage with the global maintenance of polarized tissue architecture. Although the disruption of planar spindle alignment is proposed to cause epithelial to mesenchymal transition and cancer, the in vivo mechanisms regulating mitotic spindle orientation remain elusive. Here we demonstrate that the actomyosin cortex and the junction-localized neoplastic tumour suppressors Scribbled and Discs large 1 have essential roles in planar spindle alignment and thus the control of epithelial integrity in the Drosophila imaginal disc.

View Article and Find Full Text PDF

Tissue remodeling involves collective cell movement, and cell proliferation and apoptosis are observed in both development and disease. Apoptosis and proliferation are considered to be closely correlated, but little is known about their coordinated regulation in physiological tissue remodeling in vivo. The replacement of larval abdominal epidermis with adult epithelium in Drosophila pupae is a simple model of tissue remodeling.

View Article and Find Full Text PDF