Publications by authors named "Yu-chen Gu"

Alcoholism is a chronic relapsing disorder defined by loss of control over excessive consumption of ethanol despite damaging effects on the liver and brain. We previously showed that the overexpression in mice of Dyrk1A (TgDyrk1A, for dual-specificity tyrosine (Y) phosphorylation-regulated kinase 1A) reduces the severity of alcohol mediated liver injury. Ethanol consumption has also been associated with increased brain glutamate concentration that led to therapies targeting glutamatergic receptors and normalization of glutamatergic neurotransmission.

View Article and Find Full Text PDF

Epidemiological data suggest an increased risk of developing Alzheimer's disease (AD) in individuals with type 2 diabetes (T2D). AD is anatomically associated with an early progressive accumulation of Aβ leading to a gradual Tau hyperphosphorylation, which constitute the main characteristics of damaged brain in AD. Apart from these processes, mounting evidence suggests that specific features of diabetes, namely impaired glucose metabolism and insulin signaling in the brain, play a key role in AD.

View Article and Find Full Text PDF

Previous studies have indicated that miR-146a-5p acts as an oncogene in several types of cancer, yet a tumor suppressor gene in others. In non-small cell lung cancer (NSCLC), one report showed that it was downregulated and played the role of tumor suppressor. However, another study showed that miR-146a-5p was overexpressed in the serum of NSCLC patients compared to healthy controls.

View Article and Find Full Text PDF

Objective: To investigate the effects of inhibiting gap junctional intercellular communication on hypoxia/reoxygenation injury in astrocytes.

Methods: Primary cultured cerebral cortical astrocytes of neonate rats were divided into normal control group, hypoxia reoxygenation injury group and 18-α-glycyrrhetinic acid and oleamide (gap junctional intercellular channel inhibitors) group. The gap junction intercellular communication was determined by Parachute assay.

View Article and Find Full Text PDF

Objective: To investigate the effects of total flavonoids of Litsea Coreana (TFLC) on the gap junction (GJ) intercellular communication in TM3 testicular Leydig cells and whether TFLC can reduce the cytotoxicity of oxaliplatin (OHP) in vitro.

Methods: We detected the effect of TFLC on the dye spread of the in vitro cultured TM3 cells by parachute assay, observed changes in the expression of connexin 43 (Cx43) total protein in the TFLC-treated TM3 cells by Western blot, and determined the effects of TFLC on the expression of Cx43 on the membrane of the TM3 cells by immunofluorescence assay and on the cytotoxicity of OHP by MTT assay.

Results: TFLC obviously enhanced the GJ function with the increasing of the TFLC concentration in the TM3 cells.

View Article and Find Full Text PDF

In the murine model, in utero hematopoietic cell transplantation (IUHCT) has been shown to achieve low levels of allogeneic chimerism and associated donor-specific tolerance permitting minimal conditioning postnatal hematopoietic stem cell transplantation (HSCT). In this pilot study, we investigated IUHCT in the canine leukocyte adhesion deficiency (CLAD) model. Haploidentical IUHCT resulted in stable low-level donor cell chimerism in all dogs that could be analyzed by sensitive detection methodology (4 of 10) through 18 months of follow-up.

View Article and Find Full Text PDF

Human umbilical cord blood (UCB) is a valuable alternative source of ethically acceptable, clinically competent stem cells that is most likely closest to embryonic stem cells. Development of reliable methods for the expansion of cord blood stem cells is critical to ensure their clinical application. In the present article, advances in cord blood stem cell isolation, culture expansion methods through co-culture with human mesenchymal stem cells, culture optimization techniques with defined media and cord blood stem cell banking aspects have been reviewed.

View Article and Find Full Text PDF

Recent successes in treating genetic immunodeficiencies have demonstrated the therapeutic potential of stem cell gene therapy. However, the use of gammaretroviral vectors in these trials led to insertional activation of nearby oncogenes and leukemias in some study subjects, prompting studies of modified or alternative vector systems. Here we describe the use of foamy virus vectors to treat canine leukocyte adhesion deficiency (CLAD).

View Article and Find Full Text PDF

Canine leukocyte adhesion deficiency (CLAD) represents the canine counter-part of the human disease leukocyte adhesion deficiency (LAD). Defects in the leukocyte integrin CD18 adhesion molecule in both CLAD and LAD lead to recurrent, life-threatening bacterial infections. We evaluated ex vivo retroviral-mediated gene therapy in CLAD using 2 nonmyeloablative conditioning regimens--200 cGy total body irradiation (TBI) or 10 mg/kg busulfan--with or without posttransplantation immunosuppression.

View Article and Find Full Text PDF

Leukocyte adhesion deficiency (LAD)-1, a primary immunodeficiency disease caused by molecular defects in the leukocyte integrin CD18 molecule, is characterized by recurrent, life-threatening bacterial infections. Myeloablative hematopoietic stem cell transplantation is the only curative treatment for LAD-1. Recently, canine LAD (CLAD) has been shown to be a valuable animal model for the preclinical testing of nonmyeloablative transplantation regimens for the treatment of children with LAD-1.

View Article and Find Full Text PDF

Objective: The aim of this study was to test a nonmyeloablative hematopoietic stem cell transplant regimen applicable to children with leukocyte adhesion deficiency (LAD) who have a histocompatible sibling donor by using the canine model of LAD, namely canine leukocyte adhesion deficiency or CLAD.

Methods: Thirteen CLAD pups received a hematopoietic stem cell transplant from a dog leukocyte antigen (DLA)-matched littermate donor after pretransplant nonmyeloablative conditioning with 200 cGy total-body irradiation and posttransplant immunosuppression with cyclosporine and mycophenolate mofetil. Donor chimerism following transplant was assessed by flow cytometry for the presence of donor CD18 peripheral blood leukocytes and leukocyte subsets.

View Article and Find Full Text PDF

This review highlights the genotype-phenotype relationship of the genetic immunodeficiency disease leukocyte adhesion deficiency (LAD) in humans, dogs, cattle, and mice, and provides assessment of the opportunities that each animal species provides in the understanding of leukocyte biology and in developing new therapeutic approaches to LAD in humans. This comparison is important since animal models of genetic diseases in humans provide the opportunity to test new therapeutic approaches in an appropriate, disease-specific model. The success of this approach is dependent on the relationship of the phenotype in the animal to the phenotype of the disease in humans.

View Article and Find Full Text PDF

Children with the severe phenotype of the genetic immunodeficiency disease leukocyte adhesion deficiency or LAD experience life-threatening bacterial infections because of molecular defects in the leukocyte integrin CD18 molecule and the resultant failure to express the CD11/CD18 adhesion molecules on the leukocyte surface. Hematopoietic stem cell transplantation remains the only definitive therapy for LAD; however, the degree of donor chimerism and particularly the number of CD18(+) donor-derived neutrophils required to reverse the disease phenotype are not known. We performed nonmyeloablative hematopoietic stem cell transplantations from healthy matched littermates in 9 dogs with the canine form of LAD known as CLAD and demonstrate that in the 3 dogs with the lowest level of donor chimerism, less than 500 CD18(+) donor-derived neutrophils/microL in the peripheral blood of the CLAD recipients resulted in reversal of the CLAD disease phenotype.

View Article and Find Full Text PDF

Children with the genetic immunodeficiency disease leukocyte adhesion deficiency, or LAD, develop life-threatening bacterial infections as a result of the inability of their leukocytes to adhere to the vessel wall and migrate to the sites of infection. Recently, the canine counterpart to LAD, known as canine leukocyte adhesion deficiency, or CLAD, has been described in Irish setter dogs. This review describes how the clinical phenotype of dogs with CLAD closely parallels that of children with the severe deficiency phenotype of LAD, thus enabling the CLAD dog to provide a disease-specific, large-animal model for testing novel hematopoietic stem cell and gene therapy strategies before their translation to children with LAD.

View Article and Find Full Text PDF

Laminins are alphabetagamma heterotrimeric extracellular proteins that regulate cellular functions by adhesion to integrin and nonintegrin receptors. Laminins containing alpha4 and alpha5 chains are expressed in bone marrow, but their interactions with hematopoietic progenitors are unknown. We studied human bone marrow cell adhesion to laminin-10/11 (alpha5beta1gamma1/alpha5beta2gamma1), laminin-8 (alpha4beta1gamma1), laminin-1 (alpha1beta1gamma1), and fibronectin.

View Article and Find Full Text PDF