Inspired by the interesting and novel properties exhibited by Janus transition metal dichalcogenides (TMDs) and two-dimensional pentagonal structures, we here investigated the structural stability, mechanical, electronic, photocatalytic, and optical properties for a class of two-dimensional (2D) pentagonal Janus TMDs, namely penta-MSeTe (M = Ni, Pd, Pt) monolayers, by using density functional theory (DFT) combined with Hubbard's correction (). Our results showed that these monolayers exhibit good structural stability, appropriate band structures for photocatalysts, high visible light absorption, and good photocatalytic applicability. The calculated electronic properties reveal that the penta-MSeTe are semiconductors with a bandgap range of 2.
View Article and Find Full Text PDF