High-/medium-entropy materials have been explored as promising electrocatalysts for water splitting due to their unique physical and chemical properties. Unfortunately, state-of-the-art materials face the dilemma of explaining the enhancement mechanism, which is now limited to theoretical models or an unclear cocktail effect. Herein, a medium-entropy NiCoFeMnP with an advanced hierarchical particle-nanosheet-tumbleweed nanostructure has been synthesized via simple precursor preparation and subsequent phosphorization.
View Article and Find Full Text PDFThe pursuit of highly efficient electrocatalysts for the alkaline hydrogen evolution reaction (HER) is of paramount importance for water splitting. However, it is still a formidable task in MoC-based materials because of the agglomeration and strong Mo-H binding of MoC units. Herein, a novel CeOCl-CeO/MoC heterostructure nesting within a three-dimensional porous nitrogen-doped carbon matrix has been designed and used for catalyzing HER via simultaneous morphology and heterointerface engineering.
View Article and Find Full Text PDFThe only known method for the dearomative trifluoromethoxylation of indoles is preliminary, with only one substrate successfully undergoing the reaction. In this study, we not only developed a broadly applicable method for indole dearomative trifluoromethoxylation but also achieved divergent trifluoromethoxylation by fine-tuning the reaction conditions. Under optimized conditions, with a silver salt and an easily handled OCF reagent, various indoles smoothly underwent dearomatization to afford a diverse array of ditrifluoromethoxylated indolines in 50-84% isolated yields with up to 37:1 diastereoselectivity, and fluorinated trifluoromethoxylated indolines were obtained with exclusive selectivity.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
April 2023
Due to the strong electron-withdrawing nature and high lipophilicity of trifluoromethoxy group (OCF ), methods for introducing OCF into organic molecules are in high demand. However, the research area of direct enantioselective trifluoromethoxylation is still in the embryonic stage, with limited enantioselectivity and/or reaction types. Here, we describe the first copper-catalyzed enantioselective trifluoromethoxylation of propargyl sulfonates using trifluoromethyl arylsulfonate (TFMS) as the trifluoromethoxy source in up to 96 % ee.
View Article and Find Full Text PDFChem Commun (Camb)
November 2022
Compared with non-ligated Ni-Al bimetallic catalysis, bifunctional ligand-ligated Ni-Al bimetallic catalysis displays stronger synergism, not only affecting the electronic properties and steric hindrance of substrates, but also producing a directing effect for facile control of reactivity, site selectivity and enantioselectivity in the activation of C-H and C-C bonds. This review will give a brief summary of research advances in this field, highlighting the development of bifunctional ligands and their applications.
View Article and Find Full Text PDFHydroarylation of alkynes with unactivated C(sp)-H bonds via chelated C-H metalation mainly occurs at γ-position to the coordinating atom of directing groups via stable 5-membered metallacycles, while β-C(sp)-H bond-involved hydroarylation has been a formidable challenge. Herein, we used a phosphine oxide-ligated Ni-Al bimetallic catalyst to enable β-C-H bond-involved hydroarylations of alkynes via a rare 7-membered nickelacycle.
View Article and Find Full Text PDFAchieving the transition metal-catalysed pyridine C3-H alkenylation, with pyridine as the limiting reagent, has remained a long-standing challenge. Previously, we disclosed that the use of strong coordinating bidentate ligands can overcome catalyst deactivation and provide Pd-catalysed C3 alkenylation of pyridines. However, this strategy proved ineffective when using pyridine as the limiting reagent, as it required large excesses and high concentrations to achieve reasonable yields, which rendered it inapplicable to complex pyridines prevalent in bioactive molecules.
View Article and Find Full Text PDFAllylic amines are versatile building blocks in organic synthesis and exist in bioactive compounds, but their synthesis via hydroaminoalkylation of alkynes with amines has been a formidable challenge. Here, we report a late transition metal Ni-catalyzed hydroaminoalkylation of alkynes with N-sulfonyl amines, providing a series of allylic amines in up to 94% yield. Double ligands of N-heterocyclic carbene (IPr) and tricyclohexylphosphine (PCy) effectively promote the reaction.
View Article and Find Full Text PDFTransition metal catalyzed dual C-H activation and annulation with alkynes was an attractive protocol to construct polycyclic π-extended structures. However, most of them were dominated by noble metal catalysts. Disclosed herein was the study of base-metal Ni-catalysis for dual C-H annulation of -aromatic imidazole, which produced a range of desired polycyclic aza-quinolines in 48-95% yields.
View Article and Find Full Text PDFA carbamoyl fluoride-enabled enantioselective Ni-catalyzed carbocarbamoylation of unactivated alkenes was developed, providing a broad range of chiral γ-lactams bearing an all-carbon quaternary center in 45-96% yield and 38-97% ee.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
June 2020
Twofold C-H annulation of readily available formamides and alkynes without built-in chelating groups was achieved. Ni-Al bimetallic catalysis enabled by a bulky BINOL-derived chiral secondary phosphine oxide (SPO) ligand proved to be critical for high reactivity and high selectivity. This reaction uses readily available formamides as starting materials and provides a concise synthetic pathway to a broad range of chiral ferrocenes in 40-98 % yield and 93-99 % ee.
View Article and Find Full Text PDFA bifunctional secondary phosphine oxide (SPO) ligand-controlled method was developed for Ni-Al-catalyzed nonchelated dual C-H annulation of arylformamides with alkynes, providing a series of substituted amide-containing heterocycles in ≤97% yield. The SPO-bound bimetallic catalysis proved to be critical to the reaction efficiency.
View Article and Find Full Text PDFA chiral aluminum complex controlled, enantioselective nickel-catalyzed domino reaction of aryl nitriles and alkynes proceeding by C-CN bond activation was developed. The reaction provides various indenes, bearing chiral all-carbon quaternary centers, under mild reaction conditions in yields of 32 to 91 % and ee values within the 73-98 % range. The reaction mechanism and aspects of stereocontrol were investigated by DFT calculations.
View Article and Find Full Text PDFA Ni-Al bimetallic catalyzed enantioselective C-H exo-selective cyclization of imidazoles with alkenes has been developed. A series of bi- or polycyclic imidazoles with β-stereocenter were obtained in up to 98% yield and >99% ee. The bifunctional SPO ligand-promoted bimetallic catalysis proved to be critical to this challenging stereocontrol.
View Article and Find Full Text PDFA Ni-Al bimetallic catalyzed enantioselective cycloaddition reaction of cyclopropyl carboxamides with alkynes has been developed. A series of cyclopentenyl carboxamides were obtained in up to 99% yield and 94% ee. The bifunctional-ligand-enabled bimetallic catalysis proved to be an efficient strategy for the C-C bond cleavage of unreactive cyclopropanes.
View Article and Find Full Text PDFPd-catalyzed highly para-selective arylations of monosubstituted simple arenes with arylboronic acids to widely existed biaryls have been developed. Inspired by requisite amide-directing groups in reported selective oxidative couplings, amide ligands, especially DMF, are designed and found to be critical for the selectivity control in current arylations.
View Article and Find Full Text PDF