The eye orbit has mechanical and acoustic characteristics that determine resonant frequencies and amplify acoustic signals in certain frequency ranges. These characteristics also interfere with the acoustic amplitudes and frequencies of eyeball when measured with an acoustic tonometer. A model in which a porcine eyeball was embedded in ultrasonic conductive gel in the orbit of a model skull was used to simulate an in vivo environment, and the acoustic responses of eyeballs were detected.
View Article and Find Full Text PDF