Environ Sci Pollut Res Int
February 2023
Physicochemical properties of nanoparticles are important in regulating nanoparticle toxicity; however, the contribution of nanoparticle charge remains unclear. The objective of this study was to investigate the pulmonary effects of inhalation of charged soot nanoparticles. We established a stably charged nanoparticle generation system for whole-body exposure in BALB/c mice, which produced positively charged, negatively charged, and neutral soot nanoparticles in a wide range of concentrations.
View Article and Find Full Text PDFBackground: Exposure to air pollution exerts direct effects on respiratory organs; however, molecular alterations underlying air pollution-induced pulmonary injury remain unclear. In this study, we investigated the effect of air pollution on the lung tissues of Sprague-Dawley rats with whole-body exposure to traffic-related PM (particulate matter < 1 μm in aerodynamic diameter) pollutants and compared it with that in rats exposed to high-efficiency particulate air-filtered gaseous pollutants and clean air controls for 3 and 6 months. Lung function and histological examinations were performed along with quantitative proteomics analysis and functional validation.
View Article and Find Full Text PDFInter-alpha-trypsin inhibitor heavy chain 4 (ITIH4) is a type II acute-phase protein; however, the role of pulmonary ITIH4 after exposure to air pollution remains unclear. In this study, we investigated the role of ITIH4 in the lungs in response to air pollution. ITIH4 expression in bronchoalveolar lavage fluid (BAL) of 47 healthy human subjects and of Sprague-Dawley rats whole-body exposed to air pollution was determined, and the underlying antiapoptotic and matrix-stabilizing pathways in alveolar epithelial A549 cells induced by diesel exhaust particles (DEPs) as well as ITIH4-knockdown were investigated.
View Article and Find Full Text PDF