In the present study, porcine-derived collagen type I was covalently immobilized on the surface of titanium (Ti) implants via carboxyl groups introduced by bonded p-vinylbenzoic acid to investigate its in vitro biocompatibility with gingival stem cells and in vivo bone regeneration behavior in the edentulous ridges of Lanyu small-ear pigs at weeks 2 and 6 (short-term effectiveness) through micro-computed tomography and histological analysis. Analytical results found that gingival stem cells showed effective adhesion and spreading on these collagen-immobilized implant surfaces. After 2 and 6 weeks of healing, significant differences in Hounsfield units were observed among the control (week 2 (674.
View Article and Find Full Text PDFThe present study investigated the in vivo bone-forming efficacy of an innovative titanium (Ti) dental implant combined with a collagen sponge containing recombinant human bone morphogenetic protein-2 (BMP-2) in a pig model. Two different concentrations of BMP-2 (20 and 40 µg/mL) were incorporated into collagen sponges and placed at the bottom of Ti dental implants. The investigated implants were inserted into the edentulous ridge at the canine-premolar regions of Lanyu small-ear pigs, which were then euthanized at weeks 1, 2, 4, 8, and 12 post-implantation.
View Article and Find Full Text PDF