Publications by authors named "Yu-Sin Jang"

Functional flavonoid production is a new agenda in the agricultural industry, and young barley leaves (YBL) are one of the highlighted crops due to their health-beneficial flavonoid, saponarin. For the year-round cultivation of a high saponarin content of YBL, abiotic signal effects on the biosynthesis and metabolism in YBL need to be understood clearly. In this research, the effects of reactive oxygen species (ROS)-related abiotic signals, such as light, potassium, and sodium, were investigated on the biosynthetic metabolism in YBL cultivation under artificial lights.

View Article and Find Full Text PDF

Despite the discovery of several bacteria capable of interacting with polymers, the activity of the natural bacterial isolates is limited. Furthermore, there is a lack of knowledge regarding the development of bioprocesses for polyethylene (PE) degradation. Here, we report a bioprocess using pseudo-resting cells for efficient degradation of PE.

View Article and Find Full Text PDF

The escalating waste generation rates, driven by population growth, urbanization, and consumption patterns, have made waste management a critical global concern with significant environmental, social, and economic repercussions. Among the various waste sources, lignocellulosic biomass represents a significant proportion of agricultural, agro-industrial, and municipal wastes. Biofuels are gaining attention as a promising substitute to fossil fuels, and butanol is one such biofuel that has been identified as a potential candidate due to its compatibility with existing fuel infrastructure, lower volatility, and higher energy density.

View Article and Find Full Text PDF

Here, we report the construction of a Clostridium acetobutylicum strain ATCC 824 (pCD07239) by heterologous expression of carbonyl branch genes (CD630_0723∼CD630_0729) from Clostridium difficile, aimed at installing a heterologous Wood-Ljungdahl pathway (WLP). As part of this effort, in order to validate the methyl branch of the WLP in the C. acetobutylicum, we performed C-tracing analysis on knockdown mutants of four genes responsible for the formation of 5-methyl-tetrahydrofolate (5-methyl-THF) from formate: CA_C3201, CA_C2310, CA_C2083, and CA_C0291.

View Article and Find Full Text PDF

Due to the hazard of plastic waste exposed to the environment, microorganisms capable of degrading different polymeric pollutants have gained attention. Here, we report the complete genome sequence of Acinetobacter nosocomialis GNU001, which was isolated from a landfill. The genome was composed of a circular chromosome of 3,850,149 bp and a plasmid.

View Article and Find Full Text PDF

In the more than 100 years since the invention of plastics, various plastic polymers have been developed that exhibit different characteristics and have been widely used in production and life. In 2020 alone, nearly 400 million tons of plastics were produced globally. However, while plastic such as polyethylene brings us convenience, it also threatens environmental sustainability and human health.

View Article and Find Full Text PDF

ATPase, a key enzyme involved in energy metabolism, has not yet been well studied in . Here, we knocked down the gene encoding the ATPase gamma subunit in ATCC 824 using a mobile group II intron system and analyzed the physiological characteristics of the gene knockdown mutant, 824-2866KD. Properties investigated included cell growth, glucose consumption, production of major metabolites, and extracellular pH.

View Article and Find Full Text PDF

Alginate and its derivatives are annually produced approximately 30,000 tons or more and are applied to various industries as they are natural polymers. The global market for alginate and its derivatives has been growing steadily. There is little research compared to other enzymes produced through biomass degradation or modification.

View Article and Find Full Text PDF

Marine biomasses capable of fixing carbon dioxide have attracted attention as an alternative to fossil resources for fuel and chemical production. Although a simple co-fermentation of fermentable sugars, such as glucose and galactose, has been reported from marine biomass, no previous report has discussed the fine-control of the galactose-to-glucose consumption ratio in this context. Here, we sought to finely control the galactose-to-glucose consumption ratio in the co-fermentation of these sugars using engineered Escherichia coli strains.

View Article and Find Full Text PDF

Strains of genus are used for production of various value-added products including fuels and chemicals. Development of any commercially viable production process requires a combination of both strain and fermentation process development strategies. The strain development in sp.

View Article and Find Full Text PDF

Hyaluronic acid is a glycosaminoglycan biopolymer widely present throughout connective and epithelial tissue, and has been of great interest for medical and cosmetic applications. In the microbial production of hyaluronic acid, it has not been established to utilize galactose enabling to be converted to UDP-glucuronic acid, which is a precursor for hyaluronic acid biosynthesis. In this study, we engineered to produce hyaluronic acid from glucose and galactose.

View Article and Find Full Text PDF

The utilized biomass is an important consideration for sustainable biofuel production. To avoid competing with food needs, researchers have turned their attention to non-food lignocellulosic biomasses as potential feedstocks for biofuel production. However, the saccharification of a lignocellulosic biomass produces a large amount of lignin as waste.

View Article and Find Full Text PDF

The use of the pesticide chlorfenapyr has been increasing over time, with a consequent wider application to crops. However, there is limited information available on the amount and safety of the residues it leaves on crops. The amount of chlorfenapyr residues in sweet persimmon ( L.

View Article and Find Full Text PDF

Butanol production by is accompanied by coproduction of acetone and ethanol, which reduces the yield of butanol and increases the production cost. Here, we report development of several clostridial aldehyde/alcohol dehydrogenase (AAD) variants showing increased butanol selectivity by a series of design and analysis procedures, including random mutagenesis, substrate specificity feature analysis, and structure-based butanol selectivity design. The butanol/ethanol ratios (B/E ratios) were dramatically increased to 17.

View Article and Find Full Text PDF

Butyl butyrate (BB) has been widely used as a flavor and fragrance compound in the beverage, food, perfume, and cosmetic industries. Currently, BB is produced through two-step processes; butanol and butyrate are first produced and are used as precursors for the esterification reactions to yield BB in the next step. Recently, an alternative process to the current process has been developed by using microorganisms for the one-pot BB production.

View Article and Find Full Text PDF

Butyl butyrate is widely used as a fragrance additive for foods and beverages. The first step in the currently used process is the production of precursors, including butanol and butyrate, from petroleum using chemical catalysts, followed by the conversion of precursors to butyl butyrate by immobilized lipase. In this work, we engineered Clostridium acetobutylicum for the selective, one-step production of butyl butyrate from glucose.

View Article and Find Full Text PDF

Previously the development of a hyper acetone-butanol-ethanol (ABE) producing Clostridium acetobutylicum BKM19 strain capable of producing 30.5% more total solvent by random mutagenesis of its parental strain PJC4BK, which is a buk mutant C. acetobutylicum ATCC 824 strain is reported.

View Article and Find Full Text PDF

Unlabelled: Clostridium tyrobutyricum is a Gram-positive anaerobic bacterium that efficiently produces butyric acid and is considered a promising host for anaerobic production of bulk chemicals. Due to limited knowledge on the genetic and metabolic characteristics of this strain, however, little progress has been made in metabolic engineering of this strain. Here we report the complete genome sequence of C.

View Article and Find Full Text PDF

Gene overexpression is one of the most basic strategies in metabolic engineering, but the factors determining gene expression levels have been poorly studied in Clostridium species. In this study, we found that a short single-stranded 5' untranslated region (UTR) sequence led to decreased gene expression in Clostridium acetobutylicum. Using an in vitro enzyme assay and reverse transcription-quantitative PCR, we found that addition of a small stem-loop at the 5' end of mRNA increased mRNA levels and thereby protein expression levels up to 4.

View Article and Find Full Text PDF
Article Synopsis
  • Succinic acid (SA) is a key bio-based chemical with diverse applications, prompting extensive research into its economical production.
  • Various microbial strains, like Saccharomyces cerevisiae and Escherichia coli, have been engineered through metabolic strategies to enhance SA production, focusing on metrics like titer, yield, and productivity.
  • The review analyzes successful commercial processes and offers insights into future developments in the bio-based production of succinic acid.
View Article and Find Full Text PDF

Butanol has been widely used as an important industrial solvent and feedstock for chemical production. Also, its superior fuel properties compared with ethanol make butanol a good substitute for gasoline. Butanol can be efficiently produced by the genus Clostridium through the acetone-butanol-ethanol (ABE) fermentation, one of the oldest industrial fermentation processes.

View Article and Find Full Text PDF

Thiolase is the first enzyme catalysing the condensation of two acetyl-coenzyme A (CoA) molecules to form acetoacetyl-CoA in a dedicated pathway towards the biosynthesis of n-butanol, an important solvent and biofuel. Here we elucidate the crystal structure of Clostridium acetobutylicum thiolase (CaTHL) in its reduced/oxidized states. CaTHL, unlike those from other aerobic bacteria such as Escherichia coli and Zoogloea ramegera, is regulated by the redox-switch modulation through reversible disulfide bond formation between two catalytic cysteine residues, Cys88 and Cys378.

View Article and Find Full Text PDF

Due to the increasing concerns about limited fossil resources and environmental problems, there has been much interest in developing biofuels from renewable biomass. Ethanol is currently used as a major biofuel, as it can be easily produced by existing fermentation technology, but it is not the best biofuel due to its low energy density, high vapor pressure, hygroscopy, and incompatibility with current infrastructure. Higher alcohols, including 1-propanol, 1-butanol, isobutanol, 2-methyl-1-butanol, and 3-methyl-1-butanol, which possess fuel properties more similar to those of petroleum-based fuel, have attracted particular interest as alternatives to ethanol.

View Article and Find Full Text PDF

The fermentation carried out by the solvent-producing bacterium, Clostridium acetobutylicum, is characterized by two distinct phases: acidogenic and solventogenic phases. Understanding the cellular physiological changes occurring during the phase transition in clostridial fermentation is important for the enhanced production of solvents. To identify protein changes upon entry to stationary phase where solvents are typically produced, we herein analyzed the proteomic profiles of the parental wild type C.

View Article and Find Full Text PDF

A typical characteristic of the butyric acid-producing Clostridium is coproduction of both butyric and acetic acids. Increasing the butyric acid selectivity important for economical butyric acid production has been rather difficult in clostridia due to their complex metabolic pathways. In this work, Clostridium acetobutylicum was metabolically engineered for highly selective butyric acid production.

View Article and Find Full Text PDF