Introduction: Immune checkpoint inhibitor therapy is a highly promising strategy for clinical treatment of cancer. Among these inhibitors, ipilimumab stands out for its ability to induce cytotoxic T cell proliferation and activation by binding to CTLA-4. However, ipilimumab also gives rise to systemic immune-related adverse effects and tumor immune evasion, limiting its effectiveness.
View Article and Find Full Text PDFWe study the spin-dependent electronic and thermoelectric transport through a structure composed of triple quantum dots (TQDs) coupled to two metallic leads in the presence of spin-dependent interdot couplings, which is reliable by applying a static magnetic field on the tunnel junctions between different dots. When the TQDs are serially connected, a 100 % spin-polarized conductance and thermopower emerge even for very small spin-polarization of the interdot coupling as the dots are weakly coupled to each other. Whereas if the TQDs are connected in a ring shape, the Fano antiresonance will result in sharp peaks in the conductance and thermopower.
View Article and Find Full Text PDFAims: Distinctive states of redox-dependent cysteine (Cys) modifications are known to regulate signaling homeostasis under various pathophysiological conditions, including myocardial injury or protection in response to ischemic stress. Recent evidence further implicates a dynamic interplay among these modified forms following changes in cellular redox environment. However, a precise delineation of multiplexed Cys modifications in a cellular context remains technically challenging.
View Article and Find Full Text PDF