WD repeat domain 19 (Wdr19) is a major component of the intraflagellar transport (IFT) machinery, which is involved in the function of primary cilia. However, the effects of Wdr19 on primary cilia formation, cystogenesis, and polycystic kidney disease (PKD) progression remain unclear. To study these effects, we generated three lines of kidney-specific conditional knockout mice: Wdr19-knockout (Wdr19-KO, Wdr19 ::Cdh16-Cre ), Pkd1-knockout (Pkd1-KO, Pkd1 ::Cdh16-Cre ), and Wdr19/Pkd1-double knockout (Wdr19&Pkd1-dKO, Wdr19 ;Pkd1 ::Cdh16-Cre ) mice.
View Article and Find Full Text PDFInflammatory bowel disease is a chronic and progressive inflammatory intestinal disease that includes two major types, namely ulcerative colitis and Crohn's disease (CD). CD is characterized by intestinal epithelial hyperplasia and inflammatory cell infiltration. Transfer of CD25CD45RBCD4 (naïve) T cells into immunodeficiency mice induces autoimmune colitis with pathological lesions similar to CD and loss of body weight 4 weeks after cell transfer.
View Article and Find Full Text PDFWe report a kinetic study of Ag nanoparticles (AgNPs) under acidic environments (i.e., pH 2.
View Article and Find Full Text PDFThe photophysical properties of fluorescent Hammett acidity indicator derived from 3,4,5,6-tetrahydrobis(pyrido[3,2-g]indolo)[2,3-a:3',2'-j]acridine (1a), 6-bis(pyrido[3,2-g]indol-2'-yl)pyridine (1b) and their analogues have been investigated in sulfuric acid solutions by means of absorption, fluorimetry, relaxation dynamics and computational approach. These new indicators undergo a reversible protonation process in the Hammett acidity range of H0 < 0, accompanied by a drastic increase of the bright blue-green (1a) or yellow (1b) fluorescence intensity upon increasing the acidity. For 1a in H2 SO4 , the emission yield increases as large as 200 folds from pH = -0.
View Article and Find Full Text PDFWe report a comparative study in which a single-molecule fluorescence resonance energy transfer approach was used to examine how the binding of two families of HIV-1 viral proteins to viral RNA hairpins locally changes the RNA secondary structures. The single-molecule fluorescence resonance energy transfer results indicate that the zinc finger protein (nucleocapsid) locally melts the TAR RNA and RRE-IIB RNA hairpins, whereas arginine-rich motif proteins (Tat and Rev) may strengthen the hairpin structures through specific binding interactions. Competition experiments show that Tat and Rev can effectively inhibit the nucleocapsid-chaperoned annealing of complementary DNA oligonucleotides to the TAR and RRE-IIB RNA hairpins, respectively.
View Article and Find Full Text PDFThe human immunodeficiency virus type-1 (HIV-1) nucleocapsid (NC) protein is believed to be unique among the nucleic acid (NA) binding proteins encoded by this retrovirus in being highly multifunctional and relatively nonsequence-specific. Underlying many of NC's putative functions, including for example its chaperon-like activity for various steps of HIV-1 reverse transcription, is NC's ability to partially melt short double-stranded regions of structured NAs, which is essentially a consequence of NC's general binding preference for single-stranded bases. Herein we report a different, previously undiscovered, mode of NC/NA interaction, i.
View Article and Find Full Text PDFWe report the preparation of a series of new heteroleptic Ir(III) metal complexes chelated by two cyclometalated 1-(2,4-difluorophenyl)pyrazole ligands (dfpz)H and a third ancillary bidentate ligand (L=X). Such an intricate design lies in a core concept that the cyclometalated dfpz ligands always warrant a greater pi pi* gap in these series of iridium complexes. Accordingly, the lowest one-electron excitation would accommodate the pi* orbital of the ancillary L=X ligands, the functionalization of which is then exploited to fine-tune the phosphorescent emission wavelengths.
View Article and Find Full Text PDFPreparation of a new series of neutral metal complexes [(cod)Ir(fppz)] (1), [(cod)Ir(bppz)] (2), [(cod)Ir(fptz)] (3) and [(cod)Ir(bptz)] (4), bearing one cod ligand and a pyridyl azolate chelate are reported. A single-crystal X-ray diffraction study of 3 reveals the expected distorted square-planar geometry. The lowest absorption band consists of IrI atom increased triplet dpi-->pi* transitions (3MLCT), the assignment of which is firmly supported by the theoretical approaches.
View Article and Find Full Text PDFA new class of highly fluorescent dyes, 4,8-diphenyl-2-oxa-bicyclo[3.3.0]octa-4,8-diene-3,6-diones (1a-c), have been synthesized, they all exhibit unity fluorescence quantum yield and short radiative lifetime (< 4 ns) in common organic solvents and have demonstrated remarkable amplified spontaneous emission with a gain efficiency of > 10.
View Article and Find Full Text PDFA new series of luminescent platinum(II) azolate complexes with a formula of [Pt(NwedgeN)(2)], in which NwedgeN = mppz (1), bppz (2a), bzpz (2b), bmpz (2c), bqpz (2d), fppz (3a), hppz (3b), bptz (4), hptz (5), were synthesized, and their photophyscial properties were examined. Single-crystal X-ray diffraction studies of 2c and 3b revealed a planar molecular geometry, in which the NwedgeN chelates adopt a trans configuration and show notable interligand C-H..
View Article and Find Full Text PDFA series of heteroleptic Ir(III) metal complexes 1-3 bearing two N-phenyl-substituted pyrazoles and one 2-pyridyl pyrazole (or triazole) ligands were synthesized and characterized to attain highly efficient, room-temperature blue phosphorescence. The N-phenylpyrazole ligands, dfpzH = 1-(2,4-difluorophenyl)pyrazole, fpzH = 1-(4-fluorophenyl)pyrazole, dfmpzH = 1-(2,4-difluorophenyl)-3,5-dimethylpyrazole, and fmpzH = 1-(4-fluorophenyl)-3,5-dimethylpyrazole, show a similar reaction pattern with respect to the typical cyclometalated (C(wedge)N) chelate, which utilizes its ortho-substituted phenyl segment to link with the central Ir(III) atom, while the second 2-pyridylpyrazole (or triazole) ligand, namely, fppzH = 3-(trifluoromethyl)-5-(2-pyridyl)pyrazole, fptzH = 3-(trifluoromethyl)-5-(2-pyridyl)triazole, and hptzH = 3-(heptafluoropropyl)-5-(2-pyridyl)triazole, undergoes typical anionic (N--N) chelation to complete the octahedral framework. X-ray structural analyses on complexes [(dfpz)(2)Ir(fppz)] (1a) and [(fmpz)(2)Ir(hptz)] (3d) were established to confirm their molecular structures.
View Article and Find Full Text PDFThe rational design and syntheses of a new series of Os(II) complexes with formula [Os(fppz)(2)(CO)(L)] (1: L=4-dimethylaminopyridine; 2: L = pyridine; 3: L = 4,4'-bipyridine; 4: L = pyridazine; 5: L = 4-cyanopyridine), bearing two (2-pyridyl)pyrazolate ligands (fppz) together with one carbonyl and one N-heterocyclic ligand at the axial positions are reported. Single-crystal X-ray diffraction studies of, for example, 2 reveal a distorted octahedral geometry in which both fppz ligands reside in the equatorial plane with a trans configuration and adopt a bent arrangement at the metal center with a dihedral angle of approximately 23 degrees , while the carbonyl and pyridine ligands are located at the axial positions. Variation of the axial N-heterocyclic ligand leads to remarkable changes in the photophysical properties as the energy gap and hence the phosphorescence peak wavelength can be tuned.
View Article and Find Full Text PDFA new series of quinolinolate osmium carbonyl complexes were synthesized and characterized by spectroscopic methods. Single-crystal X-ray diffraction studies indicate that these complexes consist of an octahedral ligand arrangement with one chelating quinolinolate, one tfa or halide ligand, and three mutually orthogonal terminal CO ligands. Variation of the substituents on quinolinolate ligands imposes obvious electronic or structural effects, while changing the tfa ligand to an electron-donating iodide slightly increases the charge density on the central osmium atom.
View Article and Find Full Text PDF