Clin Exp Pharmacol Physiol
April 2019
Azithromycin (AZM) has been used for the treatment of asthma and chronic obstructive pulmonary disease (COPD); however, the effects and underlying mechanisms of AZM remain largely unknown. The effects of AZM on airway smooth muscles (ASMs) and the underlying mechanisms were studied using isometric muscle force measurements, the examination of lung slices, imaging, and patch-clamp techniques. AZM completely inhibited acetylcholine (ACH)-induced precontraction of ASMs in animals (mice, guinea pigs, and rabbits) and humans.
View Article and Find Full Text PDFβ-adrenoceptor agonists are commonly used as bronchodilators to treat obstructive lung diseases such as asthma and chronic obstructive pulmonary disease (COPD), however, they induce severe side effects. Therefore, developing new bronchodilators is essential. Herbal plants were extracted and the extracts' effect on airway smooth muscle (ASM) precontraction was assessed.
View Article and Find Full Text PDFCell Physiol Biochem
August 2018
Background/aims: Tetraethylammonium chloride (TEA) induces oscillatory contractions in mouse airway smooth muscle (ASM); however, the generation and maintenance of oscillatory contractions and their role in ASM are unclear.
Methods: In this study, oscillations of ASM contraction and intracellular Ca2+ were measured using force measuring and Ca2+ imaging technique, respectively. TEA, nifedipine, niflumic acid, acetylcholine chloride, lithium chloride, KB-R7943, ouabain, 2-Aminoethoxydiphenyl borate, thapsigargin, tetrodotoxin, and ryanodine were used to assess the mechanism of oscillatory contractions.
Because of the serious side effects of the currently used bronchodilators, new compounds with similar functions must be developed. We screened several herbs and found that Polygonum aviculare L. contains ingredients that inhibit the precontraction of mouse and human airway smooth muscle (ASM).
View Article and Find Full Text PDFClin Exp Pharmacol Physiol
October 2017
The effects of hypertonic solution on airway smooth muscle (ASM) contraction and the underlying mechanisms are largely unknown. We found that hypertonic saline (HS) inhibited acetylcholine (ACh)-induced contraction of ASM from the mouse trachea and human bronchi. In single mouse ASM cells (ASMCs), ACh induced an increase in intracellular Ca that was further enhanced by 5% NaCl, indicating that the HS-induced inhibition of ASM contraction was not mediated by a decrease in cytosolic Ca .
View Article and Find Full Text PDF