Food protein carriers from different sources might have distinct stabilizing and enhancing effects on the same small molecule. To elucidate the molecular mechanism, five different sourced proteins including soy protein isolates (SPIs), whey protein isolates (WPIs), edible dock protein (EDP), protein (TMP), and yeast protein (YP) were used to prepare protein hydrogels for delivering myricetin (Myr). The results suggested that the loading capacity order of Myr in different protein hydrogels was EDP (11.
View Article and Find Full Text PDFIn this study, galangin (Gal), kaempferol (Kae), quercetin (Que), and myricetin (Myr) were chosen as the representative flavonoids with different phenolic hydroxyl numbers in the B-ring. The edible dock protein (EDP) was chosen as the new plant protein. Based on this, the regulation mechanism of the phenolic hydroxyl number on the self-assembly behavior and molecular interaction between EDP and flavonoid components were investigated.
View Article and Find Full Text PDFIn this study, chrysin (Chr), baicalein (Bai), apigenin (Api) and galangin (Gal) were selected as the representative flavonoids with different position of phenolic hydroxyl groups, and edible dock protein (EDP) was used as a material to construct delivery system. Subsequently, the molecular interactions and functional properties of flavonoids-loaded EDP nanomicelles were investigated. Results exhibited that hydrogen bond, hydrophobic interaction and van der Waals force were the main driving forces for self-assembly of flavonoids and EDP molecules.
View Article and Find Full Text PDFUsing a simple liquid-liquid extraction (LLE) procedure for sample pretreatment, 7-Aminoflunitrazepam (7-aminoFM2), a major metabolite of flunitrazepam (FM2), was determined in urine samples by polymeric monolith-based capillary liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The linearity was found in the range of 0.1-50ngmL with a method detection limit (signal-to-noise ratio of 3) estimated at 0.
View Article and Find Full Text PDFIn this study, recently developed 1,6-hexanediol ethoxylate diacrylate (HEDA)-based polymeric monoliths were utilized as sorbents for efficient extraction of phenylurea herbicides (PUHs) from water samples. The HEDA-based monolithic sorbents were prepared in a fused silica capillary (0.7mm i.
View Article and Find Full Text PDFIn this study, methacrylic acid (MAA) was incorporated with alkyl methacrylates to increase the hydrophilicity of the synthesized ethylene dimethacrylate-based (EDMA-based) monoliths for separating polar small molecules by capillary LC analysis. Different alkyl methacrylate-MAA ratios were investigated to prepare a series of 30% alkyl methacrylate-MAA-EDMA monoliths in fused-silica capillaries (250-μm i.d.
View Article and Find Full Text PDFBackground: Astrocytes do not only maintain homeostasis of the extracellular milieu of the neurons, but also play an active role in modulating synaptic transmission. Palmitic acid (PA) is a saturated fatty acid which, when being excessive, is a significant risk factor for lipotoxicity. Activation of astrocytes by PA has been shown to cause neuronal inflammation and demyelination.
View Article and Find Full Text PDFDue to the high porosity, good thermal stability, and good physical stability at high pressure, polymer monoliths have been successfully utilized as the stationary phases for capillary liquid chromatography (LC) analysis. In this study, we introduced 1,6-hexanediol ethoxylate diacrylate (HEDA) as a cross-linker to prepare alkyl methacrylate monoliths for efficient separation of polar small molecules. HEDA provided additional dipole-dipole interactions between the monolithic stationary phases and polar analytes.
View Article and Find Full Text PDF