Objective: We test whether the specialized pro-resolving molecule Maresin 1 (MaR1) attenuates nociceptive behaviors in mice with osteoarthritis-like pain.
Design: Osteoarthritis (OA)-like pain behavior was induced by intra-articular injection of monosodium iodoacetate (MIA) and treated with MaR1 (N=6) or vehicle (N=5) by intraperitoneal injection 8 weeks after injury. Mice without MIA injection were used as control (N=6).
Bone injuries such as fractures are one major cause of morbidities worldwide. A considerable number of fractures suffer from delayed healing, and the unresolved acute pain may transition to chronic and maladaptive pain. Current management of pain involves treatment with NSAIDs and opioids with substantial adverse effects.
View Article and Find Full Text PDFWhether the use of neuraxial anesthesia or general anesthesia leads to more favorable postoperative outcomes in patients receiving hip fracture surgery remains unclear. We used data from the American College of Surgeons National Surgical Quality Improvement Program (ACS NSQIP) Data Files between 2016 and 2020 to investigate the association of neuraxial anesthesia and general anesthesia with morbidity and mortality after hip fracture surgery. Inverse probability of treatment weighting (IPTW) was used to balance the baseline characteristics, and multivariable Cox regression models were used to estimate the hazard ratio (HR) with a 95% confidence interval (CI) for postoperative morbidity and mortality among the different anesthesia groups.
View Article and Find Full Text PDFBackground: The incidence of chronic kidney disease is increasing, but most cases are not diagnosed until the accidental finding of abnormal laboratory data or the presentation of severe symptoms. Patients with chronic kidney disease are reported to have an increased risk of postoperative mortality and morbidities, but previous studies mainly targeted populations undergoing cardiovascular surgery. The authors aimed to evaluate the risk of postoperative mortality and complications in a surgical population with preoperative renal insufficiency (RI).
View Article and Find Full Text PDFBone tissue undergoes continuous remodeling osteoclast-mediated bone resorption and osteoblast-mediated bone formation. An imbalance in this process with enhanced osteoclastic activity can lead to excessive bone resorption, resulting in bone thinning. Once activated, osteoclasts bind to the bone surface and acidify the local niche.
View Article and Find Full Text PDFExtracellular adenosine has been shown to play a key role in maintaining bone health and could potentially be used to treat bone loss. However, systemic administration of exogenous adenosine to treat bone disorders remains a challenge due to the ubiquitous presence of adenosine receptors in different organs and the short half-life of adenosine in circulation. Towards this, we have developed a bone-targeting nanocarrier and determined its potential for systemic administration of adenosine.
View Article and Find Full Text PDFApproaches that enable innate repair mechanisms hold great potential for tissue repair. Herein, biomaterial-assisted sequestration of small molecules is described to localize pro-regenerative signaling at the injury site. Specifically, a synthetic biomaterial containing boronate molecules is designed to sequester adenosine, a small molecule ubiquitously present in the human body.
View Article and Find Full Text PDFAdenosine and its receptors play a key role in bone homeostasis and regeneration. Extracellular adenosine is generated from CD39 and CD73 activity in the cell membrane, through conversion of adenosine triphosphate to adenosine monophosphate (AMP) and AMP to adenosine, respectively. Despite the relevance of CD39/CD73 to bone health, the roles of these enzymes in bona fide skeletal disorders remain unknown.
View Article and Find Full Text PDFWe present in vivo sequence-specific RNA base editing via adenosine deaminases acting on RNA (ADAR) enzymes with associated ADAR guide RNAs (adRNAs). To achieve this, we systematically engineered adRNAs to harness ADARs, and comprehensively evaluated the specificity and activity of the toolsets in vitro and in vivo via two mouse models of human disease. We anticipate that this platform will enable tunable and reversible engineering of cellular RNAs for diverse applications.
View Article and Find Full Text PDFBackground: Phenylboronic acid-polymers (PBA-polymers) have attracted tremendous attention as potential stimuli-responsive materials with applications in drug-delivery depots, scaffolds for tissue engineering, HIV barriers, and biomolecule-detecting/sensing platforms. The unique aspect of PBA-polymers is their interactions with diols, which result in reversible, covalent bond formation. This very nature of reversible bonding between boronic acids and diols has been fundamental to their applications in the biomedical area.
View Article and Find Full Text PDFUnlabelled: Emerging studies show the potential application of synthetic biomaterials that are intrinsically osteoconductive and osteoinductive as bone grafts to treat critical bone defects. Here, the biomaterial not only assists recruitment of endogenous cells, but also supports cellular activities relevant to bone tissue formation and function. While such biomaterial-mediated in situ tissue engineering is highly attractive, success of such an approach relies largely on the regenerative potential of the recruited cells, which is anticipated to vary with age.
View Article and Find Full Text PDFBackground: Given the shortage of available organs for whole or partial liver transplantation, hepatocyte cell transplantation has long been considered a potential strategy to treat patients suffering from various liver diseases. Some of the earliest approaches that attempted to deliver hepatocytes via portal vein or spleen achieved little success due to poor engraftment. More recent efforts include transplantation of cell sheets or thin hepatocyte-laden synthetic hydrogels.
View Article and Find Full Text PDFDevelopment of efficacious in vivo delivery platforms for CRISPR-Cas9-based epigenome engineering will be critical to enable the ability to target human diseases without permanent modification of the genome. Toward this, we utilized split-Cas9 systems to develop a modular adeno-associated viral (AAV) vector platform for CRISPR-Cas9 delivery to enable the full spectrum of targeted in situ gene regulation functionalities, demonstrating robust transcriptional repression (up to 80%) and activation (up to 6-fold) of target genes in cell culture and mice. We also applied our platform for targeted in vivo gene-repression-mediated gene therapy for retinitis pigmentosa.
View Article and Find Full Text PDFCurr Protoc Stem Cell Biol
February 2018
Human pluripotent stem cells (hPSCs), which exhibit unlimited self-renewal ability and can differentiate into all cell types in the human body, are a promising cell source for cell-based therapies and regenerative medicine. Small molecules hold great potential in the derivation of tissue-specific cells from hPSCs owing to their cost-effectiveness and scalability. Here, we describe a protocol for deriving osteoblasts from hPSCs by using a single, natural small molecule: adenosine.
View Article and Find Full Text PDFSynthetic biomaterials that create a dynamic calcium (Ca)-, phosphate (PO) ion-, and calcium phosphate (CaP)-rich microenvironment, similar to that found in native bone tissue, have been shown to promote osteogenic commitment of stem cells in vitro and in vivo. The intrinsic osteoconductivity and osteoinductivity of such biomaterials make them promising bone grafts for the treatment of bone defects. We thus aimed to evaluate the potential of mineralized biomaterials to induce bone repair of a critical-sized cranial defect in the absence of exogenous cells and growth factors.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2017
Synthetic biomimetic matrices with osteoconductivity and osteoinductivity have been developed to regenerate bone tissues. However, whether such systems harbor donor marrow in vivo and support mixed chimerism remains unknown. We devised a strategy to engineer bone tissues with a functional bone marrow (BM) compartment in vivo by using a synthetic biomaterial with spatially differing cues.
View Article and Find Full Text PDFThe abilities of human pluripotent stem cells (hPSCs) to proliferate without phenotypic alteration and to differentiate into tissue-specific progeny make them a promising cell source for regenerative medicine and development of physiologically relevant in vitro platforms. Despite this potential, efficient conversion of hPSCs into tissue-specific cells still remains a challenge. Herein, we report direct conversion of hPSCs into functional osteoblasts through the use of adenosine, a naturally occurring nucleoside in the human body.
View Article and Find Full Text PDFTo understand the inhomogeneity of cells in biological systems, there is a growing demand on the capability of characterizing the properties of individual single cells. Since single-cell studies require continuous monitoring of the cell behaviors, an effective single-cell assay that can support time lapsed studies in a high throughput manner is desired. Most currently available single-cell technologies cannot provide proper environments to sustain cell growth and, proliferation of single cells and convenient, noninvasive tests of single-cell behaviors from molecular markers.
View Article and Find Full Text PDFHuman embryonic stem cells (hESCs) are attractive cell sources for tissue engineering and regenerative medicine due to their self-renewal and differentiation ability. Design of biomaterials with an intrinsic ability that promotes hESC differentiation to the targeted cell type boasts significant advantages for tissue regeneration. We have previously developed biomineralized calcium phosphate (CaP) matrices that inherently direct osteogenic differentiation of hESCs without the need of osteogenic-inducing chemicals or growth factors.
View Article and Find Full Text PDFHuman pluripotent stem cells such as embryonic stem cells (hESCs) and multipotent stem cells like mesenchymal stem cells (hMSCs) hold great promise as potential cell sources for bone tissue regeneration. Comparing the in vivo osteogenesis of hESCs and hMSCs by biomaterial-based cues provides insight into the differentiation kinetics of these cells as well as their potential to contribute to bone tissue repair in vivo. Here, we compared in vivo osteogenic differentiation of hESCs and hMSCs within osteoinductive calcium phosphate (CaP)-bearing biomineralized scaffolds that recapitulate a bone-specific mineral microenvironment.
View Article and Find Full Text PDFAdvances in tissue engineering have offered new opportunities to restore anatomically and functionally compromised tissues. Although traditional tissue engineering approaches that utilize biomaterials and cells to create tissue constructs for implantation or biomaterials as a scaffold to deliver cells are promising, strategies that can activate endogenous cells to promote tissue repair are more clinically attractive. Here, we demonstrate that an engineered injectable matrix mimicking a calcium phosphate (CaP)-rich bone-specific microenvironment can recruit endogenous cells to form bone tissues in vivo.
View Article and Find Full Text PDFStem cell differentiation is determined by a repertoire of signals from its microenvironment, which includes the extracellular matrix (ECM) and soluble cues. The ability of mesenchymal stem cells (MSCs), a common precursor for the skeletal system, to differentiate into osteoblasts and adipocytes in response to their local cues plays an important role in skeletal tissue regeneration and homeostasis. In this study, we investigated whether a bone-specific calcium phosphate (CaP) mineral environment could induce osteogenic differentiation of human MSCs, while inhibiting their adipogenic differentiation, in the presence of adipogenic-inducing medium.
View Article and Find Full Text PDFHuman induced pluripotent stem cells (hiPSC) are a promising cell source with pluripotency and self-renewal properties. Design of simple and robust biomaterials with an innate ability to induce lineage-specificity of hiPSC is desirable to realize their application in regenerative medicine. In this study, the potential of biomaterials containing calcium phosphate minerals to induce osteogenic differentiation of hiPSC was investigated.
View Article and Find Full Text PDFThe physical and chemical properties of a matrix play an important role in determining various cellular behaviors, including lineage specificity. We demonstrate that the differentiation commitment of human embryonic stem cells (hESCs), both and can be solely achieved through synthetic biomaterials. hESCs were cultured using mineralized synthetic matrices mimicking a calcium phosphate (CaP)-rich bone environment differentiated into osteoblasts in the absence of any osteogenic inducing supplements.
View Article and Find Full Text PDF