To examine cognitive deficits and associated brain activity in fragile X-associated tremor/ataxia syndrome (FXTAS) patients with parkinsonism (FXTp+), in relation to FXTAS patients without parkinsonism (FXTp-), and normal elderly controls (NC). Retrospective reviews were performed in 65 FXTAS patients who participated in the event-related brain potential (ERP) study and also had either a videotaped neurological examination or a neurological examination for extrapyramidal signs. Parkinsonism was defined as having bradykinesia with at least one of the following: rest tremor, postural instability, hypermyotonia, or rigidity.
View Article and Find Full Text PDFOnly a subset of mild cognitive impairment (MCI) patients progress to develop a form of dementia. A prominent feature of Alzheimer's disease (AD) is a progressive decline in language. We investigated if subtle anomalies in EEG activity of MCI patients during a word comprehension task could provide insight into the likelihood of conversion to AD.
View Article and Find Full Text PDFProgressive cognitive deficits are common in patients with fragile X-associated tremor/ataxia syndrome (FXTAS), with no targeted treatment yet established. In this substudy of the first randomized controlled trial for FXTAS, we examined the effects of NMDA antagonist memantine on attention and working memory. Data were analyzed for patients (24 in each arm) who completed both the primary memantine trial and two EEG recordings (at baseline and follow-up) using an auditory "oddball" task.
View Article and Find Full Text PDFMultiple visual stimuli are common in natural scenes, yet it remains unclear how multiple stimuli interact to influence neuronal responses. We investigated this question by manipulating relative signal strengths of two stimuli moving simultaneously within the receptive fields (RFs) of neurons in the extrastriate middle temporal (MT) cortex. Visual stimuli were overlapping random-dot patterns moving in two directions separated by 90°.
View Article and Find Full Text PDFOlder FMR1 premutation carriers may develop fragile X-associated tremor/ataxia syndrome (FXTAS), a neurodegenerative disorder manifesting cognitive deficits that often subsequently progress to dementia. To date, there is no specific treatment available for FXTAS. Studies have demonstrated the premutation-associated overactivation of glutamatergic receptors in neurons.
View Article and Find Full Text PDFParkinsonism Relat Disord
April 2014
Background: Parkinsonian features have been used as a minor diagnostic criterion for fragile X-associated tremor/ataxia syndrome (FXTAS). However, prior studies have examined parkinsonism (defined as having bradykinesia with at least rest tremor or postural instability) mostly in premutation carriers without a diagnosis of FXTAS. The current study was intended to elaborate this important aspect of the FXTAS spectrum, and to quantify the relationships between parkinsonism, FXTAS clinical staging and genetic/molecular measures.
View Article and Find Full Text PDFObjective: To investigate the nature of cognitive impairments and underlying brain mechanisms in older female fragile X premutation carriers with and without fragile X-associated tremor/ataxia syndrome (FXTAS).
Methods: Extensive neuropsychological testing and cognitive event-related brain potentials (ERPs; particularly, the auditory P300) were examined in 84 female participants: 33 fragile X premutation carriers with FXTAS (mean age = 62.8 years), 25 premutation carriers without FXTAS (mean age = 55.
Executive dysfunction in fragile X-associated tremor/ataxia syndrome (FXTAS) has been suggested to mediate other cognitive impairments. In the present study, event-related potentials and neuropsychological testing were combined to investigate the brain mechanisms underlying the executive dysfunction in FXTAS. Thirty-two-channel electroencephalography was recorded during an auditory "oddball" task requiring dual responses.
View Article and Find Full Text PDFWe have investigated how visual motion signals are integrated for smooth pursuit eye movements by measuring the initiation of pursuit in monkeys for pairs of moving stimuli of the same or differing luminance. The initiation of pursuit for pairs of stimuli of the same luminance could be accounted for as a vector average of the responses to the two stimuli singly. When stimuli comprised two superimposed patches of moving dot textures, the brighter stimulus suppressed the inputs from the dimmer stimulus, so that the initiation of pursuit became winner-take-all when the luminance ratio of the two stimuli was 8 or greater.
View Article and Find Full Text PDFBrain Behav Evol
October 2008
The thalamofugal and tectofugal pathways in birds are two parallel visual pathways to the telencephalon and might be comparable to the geniculocortical and colliculo-pulvinar-cortical pathways in mammals, respectively. It is known that some tectal neurons in the tectofugal pathway can signal the time-to-collision of an approaching object. Here we show by single cell recording in the pigeon that a population of visual neurons in the nucleus opticus principalis thalami (nOPT) in the thalamofugal pathway is able to detect the distance-to-collision of a large surface approaching towards the animal.
View Article and Find Full Text PDFMisinterpretations of visual information received by the retina are called visual illusions, which are known to occur in higher brain areas. However, whether they would be also processed in lower brain structures remains unknown, and how to explain the neuronal mechanisms underlying the motion after-effect is intensely debated. We show by extracellular recording that all motion-sensitive neurons in the pigeon's pretectum respond similarly to real and illusory contours, and their preferred directions are identical for both contours in unidirectional cells, whereas these directions are changed by 90 deg for real versus illusory contours in bidirectional cells.
View Article and Find Full Text PDFEur J Neurosci
November 2005
Although the optic tectum in non-mammals and its mammalian homolog, the superior colliculus, are involved in avoidance behaviors, whether and how tectal neurons respond to an object approaching on a collision course towards the animal remain unclear. Here we show by single unit recording that there exist three classes of looming-sensitive neurons in the pigeon tectal layer 13, which sends looming information to the nucleus rotundus or to the tectopontine system. The response onset time of tau cells is approximately constant whereas that for rho and eta cells depends on the square root of the diameter/velocity ratio of objects looming towards the animal, the cardioacceleration of which is also linearly related to the square root of this ratio.
View Article and Find Full Text PDF