Publications by authors named "Yu-Qin Di"

Holometabolous insects undergo morphological remodeling from larvae to pupae and to adults with typical changes in the cuticle; however, the mechanism is unclear. Using the lepidopteran agricultural insect Helicoverpa armigera, cotton bollworm, as a model, we revealed that the transcription factor RUNT-like (encoded by Runt-like) regulates the development of the pupal cuticle via promoting a pupal cuticle protein gene (HaPcp) expression. The HaPcp was highly expressed in the epidermis and wing during metamorphosis and was found being involved in pupal cuticle development by RNA interference (RNAi) analysis in larvae.

View Article and Find Full Text PDF

The fat body of the holometabolous insect is remodeled by the degradation of the larval fat body and the development of the adult fat body during metamorphosis. However, the mechanism of adult fat body development is quite unclear. Using the agricultural pest Helicoverpa armigera, the cotton bollworm, as a model, we revealed that the development of adult fat body was regulated by glycolysis, triglyceride (triacylglycerol [TAG]) synthesis, cell proliferation, and cell adhesion.

View Article and Find Full Text PDF

The regulatory subunits (P60 in insects, P85 in mammals) determine the activation of the catalytic subunits P110 in phosphatidylinositol 3-kinases (PI3Ks) in the insulin pathway for cell proliferation and body growth. However, the regulatory subunits also promote apoptosis via an unclear regulatory mechanism. Using Helicoverpa armigera, an agricultural pest, we showed that H.

View Article and Find Full Text PDF

The insulin receptor (INSR) binds insulin to promote body growth and maintain normal blood glucose levels. While it is known that steroid hormones such as estrogen and 20-hydroxyecdysone counteract insulin function, the molecular mechanisms responsible for this attenuation remain unclear. In the present study, using the agricultural pest lepidopteran Helicoverpa armigera as a model, we proposed that the steroid hormone 20-hydroxyecdysone (20E) induces dephosphorylation of INSR to counteract insulin function.

View Article and Find Full Text PDF

CTSD/CathD/CATD (cathepsin D) is a lysosomal aspartic protease. A distinguishing characteristic of CTSD is its dual functions of promoting cell proliferation via secreting a pro-enzyme outside the cells as a ligand, and promoting apoptosis via the mature form of this enzyme inside cells; however, the regulation of its secretion, expression, and maturation is undetermined. Using the lepidopteran insect , a serious agricultural pest, as a model, we revealed the dual functions and regulatory mechanisms of CTSD secretion, expression, and maturation.

View Article and Find Full Text PDF

Oligomerization of stromal interacting molecule 1 (STIM1) promotes store-operated calcium entry (SOCE); however, the mechanism of STIM1 aggregation is unclear. Here, using the lepidopteran insect and agricultural pest cotton bollworm () as a model and immunoblotting, RT-qPCR, RNA interference (RNAi), and ChIP assays, we found that the steroid hormone 20-hydroxyecdysone (20E) up-regulates STIM1 expression via G protein-coupled receptors (GPCRs) and the 20E nuclear receptor (EcRB1). We also identified an ecdysone-response element (EcRE) in the 5'-upstream region of the gene and also noted that STIM1 is located in the larval midgut during metamorphosis.

View Article and Find Full Text PDF

Insulin promotes larval growth of insects by stimulating the synthesis of the steroid hormone 20-hydroxyecdysone (20E), which induces pupation and apoptosis. However, the mechanism underlying the coordinate regulation of insect pupation and apoptosis by these two functionally opposing hormones is still unclear. Here, using the lepidopteran insect and serious agricultural pest (cotton bollworm) as a model, we report that phosphoinositide-dependent kinase-1 (PDK1) and forkhead box O (FoxO) play key roles in these processes.

View Article and Find Full Text PDF

The nuclear receptor EcRB1, which is activated by the insect steroid hormone 20-hydroxyecdysone (20E), is reportedly phosphorylated by a protein kinase after 20E induction. However, the protein kinase has not been identified, and the significance of EcRB1 phosphorylation is unclear. In this study, we identified a protein kinase C δ (PKCδ) isoform (the E isoform) that phosphorylates EcRB1 in the lepidopteran , a serious agricultural pest worldwide, to promote apoptotic gene expression and apoptosis during metamorphosis.

View Article and Find Full Text PDF