Publications by authors named "Yu-Qi Feng"

Liquid chromatography-mass spectrometry (LC-MS) has become an indispensable tool for elucidating molecular structures and quantifying diverse compounds within complex mixtures. Despite its versatility, it faces various challenges such as ion suppression, low sensitivity, analyte instability, and matrix effects, which are being overcome by different kinds of offline and online derivatization techniques to improve specificity and reduce potential interferences. In this context, considerable advancements have been made in reviewing and critically evaluating a wide range of developed methods and techniques; however, little attention has been given to post-column derivatization (PCD) in LC-MS.

View Article and Find Full Text PDF

Flow injection mass spectrometry (FI-MS) is widely employed for high-throughput metabolome analysis, yet the absence of prior separation leads to significant matrix effects, thereby limiting the metabolome coverage. In this study, we introduce a novel photosensitive MS probe, iTASO-ONH, integrated with FI-MS to establish a high-throughput strategy for submetabolome analyses. The iTASO probe features a conjugated-imino sulfonate moiety for efficient photolysis under 365 nm irradiation and a reactive group for selective metabolite labeling.

View Article and Find Full Text PDF

Branched fatty acid esters of hydroxy fatty acids (FAHFAs) represent a novel class of bioactive lipids with significant physiological roles. However, their identification, particularly of low-abundance FAHFA regioisomers, remains challenging due to their high structural similarity, low natural abundance, and the limited availability of reliable FAHFA standards. In this study, we present a QSAR-based FAHFA annotation strategy that integrates a QSAR model with an ester bond position (EP) rule to determine the EPs of FAHFA regioisomers.

View Article and Find Full Text PDF

Acyl-Coenzyme As (acyl-CoAs) are essential intermediates to incorporate carboxylic acids into the bioactive metabolic network across all species, which play important roles in lipid remodeling, fatty acids, and xenobiotic carboxylic metabolism. However, due to the poor liquid chromatographic behavior, the relatively low mass spectrometry (MS) sensitivity, and lack of authentic standards for annotation, the in-depth untargeted profiling of acyl-CoAs is challenging. We developed a chemical derivatization strategy of acyl-CoAs by employing 8-(diazomethyl) quinoline (8-DMQ) as the labeling reagent, which increased the detection sensitivity by 625-fold with good peak shapes.

View Article and Find Full Text PDF

Cytosine modifications, particularly 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC), play crucial roles in numerous biological processes. Current analytical methods are often constrained to the separate detection of either 5mC or 5hmC, or the combination of both modifications. The ability to simultaneously detect C, 5mC, and 5hmC at the same genomic locations with precise stoichiometry is highly desirable.

View Article and Find Full Text PDF

The possibility of cyanoacetohydrazide usage as a novel derivatizing agent is demonstrated in the presented article, and a comparison with hydroxylamine as the most commonly used reagent is provided. Optimal conditions for steroid derivatization with cyanoacetohydrazide are provided. According to the collected data, the maximum yield of derivatives was observed at pH 2.

View Article and Find Full Text PDF

Adenosine-to-inosine (A-to-I) editing and -methyladenosine (mA) modifications are pivotal RNA modifications with widespread functional significance in physiological and pathological processes. Although significant effort has been dedicated to developing methodologies for identifying and quantifying these modifications, traditional approaches have often focused on each modification independently, neglecting the potential co-occurrence of A-to-I editing and mA modifications at the same adenosine residues. This limitation has constrained our understanding of the intricate regulatory mechanisms governing RNA function and the interplay between different types of RNA modifications.

View Article and Find Full Text PDF

In vitro fertilization (IVF) is a highly effective treatment for infertility; however, it poses challenges for women with decreased ovarian reserve (DOR). Despite the importance of understanding the impact of DOR on IVF outcomes, limited research has explored this relationship, particularly using omics approaches. Hence, we conducted a study to investigate the association between DOR and IVF outcomes, employing a metabolomic approach.

View Article and Find Full Text PDF

DNA cytosine methylation (5-methylcytosine, 5mC) is a predominant epigenetic modification that plays a critical role in a variety of biological and pathological processes in mammals. In active DNA demethylation, the 10-11 translocation (TET) dioxygenases can sequentially oxidize 5mC to generate three modified forms of cytosine, 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Beyond being a demethylation intermediate, recent studies have shown that 5fC has regulatory functions in gene expression and chromatin organization.

View Article and Find Full Text PDF

Gibberellins (GAs) play a pivotal role in modulating plant growth and development. Glucose-conjugated gibberellins (Glc-GAs), a prevalent conjugated form of GAs, regulate intracellular GA levels by the coupling and decoupling of glucose groups. However, the diversity of Glc-GAs identified within individual species remains limited, hinting at a multitude of yet undiscovered gibberellin metabolites.

View Article and Find Full Text PDF

Peak alignment is a crucial data-processing step in untargeted metabolomics analysis that aims to integrate metabolite data from multiple liquid chromatography-mass spectrometry (LC-MS) batches for enhanced comparability and reliability. However, slight variations in the chromatographic separation conditions can result in retention time (RT) shifts between consecutive analyses, adversely affecting peak alignment accuracy. In this study, we present a retention index (RI)-based chromatographic peak-shift correction (CPSC) strategy to address RT shifts and align chromatographic peaks for metabolomics studies.

View Article and Find Full Text PDF
Article Synopsis
  • The epigenetic modification 5-hydroxymethylcytosine (5hmC) is important for regulating gene expression, but current detection methods lack the ability to map it at a detailed level across the genome.
  • The proposed SSD-seq method uses a specialized engineered protein to selectively identify 5hmC while converting other similar modifications to different bases for clearer sequencing results.
  • SSD-seq successfully created a detailed map of 5hmC in human lung tissue, showing that it mainly occurs at CpG regions and correlating well with previous studies, all while being cost-effective and simpler than traditional methods.
View Article and Find Full Text PDF
Article Synopsis
  • RNA molecules, such as rRNA, undergo key chemical modifications like ,-dimethyladenosine (mA), which is vital for various biological processes.
  • The study introduces a new technique called AlkB-facilitated demethylation (AD-mA) that allows for precise detection and quantification of mA in RNA by generating full-length cDNA from AlkB-treated samples.
  • Researchers successfully applied this method to detect mA in human rRNA and found significant changes in mA levels in lung tissues of sleep-deprived mice, highlighting its potential to help understand the role of mA in human diseases.
View Article and Find Full Text PDF

Background: The detection of 25-hydroxyvitamin D (25OHD) from dried blood spots (DBS) has been widely studied. However, the existing pretreatment methods suffer from limitations in terms of throughput (usually exceeding 2 h), complexity (involving liquid-liquid extraction or solid-phase extraction), and contamination (including multiple steps of organic solvent evaporation).

Results: We first released 25OHD from DBS samples by 50% acetonitrile solution through ultrasonication.

View Article and Find Full Text PDF

Branched fatty acid esters of hydroxy fatty acids (FAHFAs) are a class of bioactive lipids that show therapeutic potential for diabetes, anti-cancer and inflammation. These FAHFAs can be obtained through dietary intake, potentially improving human health. However, there is currently inadequate knowledge regarding the presence and variety of FAHFAs in different foods.

View Article and Find Full Text PDF

Vitamin D (VD) metabolites are involved in a variety of important metabolic processes and physiological effects in organisms. Profiling of VD metabolites favors a deep understanding of the physiological role of VD. However, VD metabolites are difficult to detect due to their high chemical structural rigidity, structural similarity, and low sensitivities under liquid chromatography-tandem mass spectrometry (LC-MS).

View Article and Find Full Text PDF

-Methyladenine (6mA) is a naturally occurring DNA modification in both prokaryotes and eukaryotes. Herein, we developed a deaminase-mediated sequencing (DM-seq) method for genome-wide mapping of 6mA at single-nucleotide resolution. The method capitalizes on the selective deamination of adenine, but not 6mA, in DNA mediated by an evolved adenine deaminase, ABE8e.

View Article and Find Full Text PDF
Article Synopsis
  • The study analyzed the Zabramski classification system for cerebrovascular malformations to determine how well it predicts clinical outcomes in patients with sporadic CCM.
  • Out of 255 patients in the study, 20% experienced a change in lesion type over a mean follow-up of almost 59 months, with type I lesions showing a higher transformation rate compared to types II and III.
  • The research found a 15.7% occurrence of hemorrhage events among patients, indicating a cumulative incidence rate of 3.4 per 100 person-years for symptomatic hemorrhage, underscoring the importance of ongoing monitoring in these cases.
View Article and Find Full Text PDF

Peak alignment is a crucial step in liquid chromatography-mass spectrometry (LC-MS)-based large-scale untargeted metabolomics workflows, as it enables the integration of metabolite peaks across multiple samples, which is essential for accurate data interpretation. Slight differences or fluctuations in chromatographic separation conditions, however, can cause the chromatographic retention time (RT) shift between consecutive analyses, ultimately affecting the accuracy of peak alignment between samples. Here, we introduce a novel RT shift correction method based on the retention index (RI) and apply it to peak alignment.

View Article and Find Full Text PDF

Gut microbiota-host co-metabolites serve as essential mediators of communication between the host and gut microbiota. They provide nutrient sources for host cells and regulate gut microenvironment, which are associated with a variety of diseases. Analysis of gut microbiota-host co-metabolites is of great significance to explore the host-gut microbiota interaction.

View Article and Find Full Text PDF

-Methyladenosine (mA) is one of the most abundant and prevalent natural modifications occurring in diverse RNA species. mA plays a wide range of roles in physiological and pathological processes. Revealing the functions of mA relies on the faithful detection of individual mA sites in RNA.

View Article and Find Full Text PDF
Article Synopsis
  • Central carbon metabolism pathway (CCM) is essential for all living organisms but detecting its intermediates is difficult.
  • Researchers created a new method combining chemical isotope labeling with LC-MS to accurately measure many CCM intermediates at once.
  • This approach successfully quantified 22 CCM intermediates in various biological samples and detected 21 in 1,000 human cells and 9 in mouse kidney slices.
View Article and Find Full Text PDF

Chemical modifications in DNA have profound influences on the structures and functions of DNA. Uracil, a naturally occurring DNA modification, can originate from the deamination of cytosine or arise from misincorporation of dUTP into DNA during DNA replication. Uracil in DNA will imperil genomic stability due to their potential in producing detrimental mutations.

View Article and Find Full Text PDF

Dopamine, adrenaline and octopamine are small polar molecules that play a vital role in regulatory systems. In this paper, phthalylglycyl chloride was proposed as a derivatization agent for octopamine, adrenaline and dopamine determination in urine for the first time. The derivatization procedure facilitated the use of reversed-phase liquid chromatography with positive electrospray ionization-high-resolution mass spectrometry.

View Article and Find Full Text PDF

Di(2-ethylhexyl) phthalate (DEHP), the most widely used plasticizers in the world, has been regarded as an endocrine disrupting chemical with serious adverse health outcomes. Accumulating evidence strongly suggests that the undesirable biological effects of DEHP are meditated by its metabolites rather than itself. However, the metabolic footprints of DEHP in vivo are still unclear.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiont24dmivo6fmjfcu884j3c0nct9un9a17): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once