Most coexisting insect species exhibit stunted growth compared to individual species on plants. This phenomenon reflects an interspecific antagonism drawing extensive attention, while the underlying mechanisms remain largely uncharacterized. Mirids (Apolygus lucorum) and cotton bollworms (Helicoverpa armigera) are two common cotton pests.
View Article and Find Full Text PDFBackground: The fall armyworm (FAW, Spodoptera frugiperda (J.E. Smith)) is a polyphagous agricultural pest with rapidly evolving adaptations to host plants.
View Article and Find Full Text PDFCaterpillar oral secretion (OS) contains active molecules that modulate plant defense signaling. We isolated an effector-like protein (Highly Accumulated Secretory Protein 1, HAS1) from cotton bollworm (Helicoverpa armigera) that is the most highly accumulated secretory protein of the nondigestive components in OS and belongs to venom R-like protein. Elimination of HAS1 by plant-mediated RNA interference reduced the suppression of OS on the defense response in plants.
View Article and Find Full Text PDFThe green mirid bug () and the cotton bollworm () are both preferred to live on cotton but cause different symptoms, suggesting specialized responses of cotton to the two insects. In this study, we investigated differential molecular mechanisms underlying cotton plant defenses against and transcriptomic analyses. At the transcription level, jasmonate (JA) signaling was dominated in defense against whereas salicylic acid (SA) signaling was more significant in defense against .
View Article and Find Full Text PDF