Publications by authors named "Yu-Min Feng"

Post-radiofrequency ablation (RFA) fever is a self-limited complication of RFA. The correlation between post-RFA fever and bacteremia and the risk factors associated with post-RFA fever have not been evaluated. Patients with newly diagnosed or recurrent hepatocellular carcinoma who underwent ultrasonography-guided RFA between April 2014 and February 2019 were retrospectively enrolled.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related deaths worldwide. Particularly, cases of bone metastasis have poorer prognoses.

Case Presentation: A 62-year-old woman with suspected advanced HCC accompanied by bone metastasis with severe back pain and sciatica showed disease remission after cyproheptadine monotherapy.

View Article and Find Full Text PDF

Plant viruses can be genetically modified to generate chimeric virus particles (CVPs) carrying heterologous peptides fused on the surface of coat protein (CP) subunits as vaccine candidates. However, some factors may be especially significant in determining the properties of chimeras. In this study, peptides from various sources and of various lengths were inserted into the Bamboo mosaic virusbased (BaMV) vector CP N-terminus to examine the chimeras infecting and accumulating in plants.

View Article and Find Full Text PDF

Helical metallic micro/nanostructures as functional components have considerable potential for future miniaturized devices, based on their unique mechanical and electrical properties. Thus, understanding and controlling the mechanical properties of metallic helices is desirable for their practical application. Herein, we implemented a direct-writing technique based on the electrodeposition method to grow copper microhelices with well-defined and programmable three-dimensional (3D) features.

View Article and Find Full Text PDF

Cyproheptadine, a serotonin antagonist, has recently been reported to function as a novel therapeutic agent by inhibiting PI3K/AKT signaling in several human cancers. However, the therapeutic effect of cyproheptadine in urothelial carcinoma (UC) has never been explored. In this study, we determined the effect of cyproheptadine on the growth of five human UC cell lines and an in vivo xenograft model.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) is a major cause of cancer deaths worldwide. However, current chemotherapeutic drugs for HCC are either poorly effective or expensive, and treatment with these drugs has not led to satisfactory outcomes. In a 2012 case report, we described our breakthrough finding in two advanced HCC patients, of whom one achieved complete remission of liver tumors and the other a normalized α-fetoprotein level, along with complete remission of their lung metastases, after the concomitant use of thalidomide and cyproheptadine.

View Article and Find Full Text PDF

Objective: Sorafenib is a recommended treatment for advanced hepatocellular carcinoma. The study is to evaluate the efficacy of sorafenib plus cyproheptadine compared with sorafenib alone in patients with advanced hepatocellular carcinoma.

Methods: A retrospective cohort study reviewed all consecutive advanced hepatocellular carcinoma cases with Child-Pugh Class A disease starting sorafenib treatment at our hospital from August 2012 to March 2013.

View Article and Find Full Text PDF

The aqueous extract from Carya cathayensis Sarg. exocarp was centrifuged, filtered, and separated into 11 elution fractions by X-5 macroporous resin chromatography. A phenolic compound, 4,8-dihydroxy-1-tetralone (4,8-DHT) was isolated from the fractions with the strongest phytotoxicity by bioassy-guided fractionation, and investigated for phytotoxicity on lettuce (Latuca sativa L.

View Article and Find Full Text PDF

Atomic force microscope infrared spectroscopy (AFM-IR) can perform IR spectroscopic chemical identification with sub-100 nm spatial resolution, but is relatively slow due to its low signal-to-noise ratio (SNR). In AFM-IR, tunable IR laser light is incident upon a sample, which results in a rise in temperature and thermomechanical expansion of the sample. An AFM tip in contact with the sample senses this nanometer-scale photothermal expansion.

View Article and Find Full Text PDF

Nonlinear mechanical systems promise broadband resonance and instantaneous hysteretic switching that can be used for high sensitivity sensing. However, to introduce nonlinear resonances in widely used microcantilever systems, such as AFM probes, requires driving the cantilever to an amplitude that is too large for any practical applications. We introduce a novel design for a microcantilever with a strong nonlinearity at small cantilever oscillation amplitude arising from the geometrical integration of a single BN nanotube.

View Article and Find Full Text PDF

A 44-year-old woman suffered from epigastralgia for 1 month. An abdominal sonography revealed a space-occupying lesion, about 6 cm, in the spleen. Contrast-enhanced CT revealed enhanced splenic lesions.

View Article and Find Full Text PDF

We measure the infrared spectra of polyethylene nanostructures of height 15 nm using atomic force microscope infrared spectroscopy (AFM-IR), which is about an order of magnitude improvement over state of the art. In AFM-IR, infrared light incident upon a sample induces photothermal expansion, which is measured by an AFM tip. The thermomechanical response of the sample-tip-cantilever system results in cantilever vibrations that vary in time and frequency.

View Article and Find Full Text PDF

We reported two cases of hepatocellular carcinoma (HCC) with lung metastases who were treated with a combination of thalidomide and cyproheptadine. The use of cyproheptadine in these two cases was originally for skin itching. Follow-up CT images revealed a complete remission of HCC in both of them after treatment for 6 months and 6 weeks, respectively.

View Article and Find Full Text PDF

Atomic force microscope (AFM) probe with a long and rigid needle tip was fabricated and studied for high Q factor dynamic (tapping mode) AFM imaging of samples submersed in liquid. The extended needle tip over a regular commercially available tapping-mode AFM cantilever was sufficiently long to keep the AFM cantilever from submersed in liquid, which significantly minimized the hydrodynamic damping involved in dynamic AFM imaging of samples in liquid. Dynamic AFM imaging of samples in liquid at an intrinsic Q factor of over 100 and an operational frequency of over 200 kHz was demonstrated.

View Article and Find Full Text PDF

It is a well-known fact that a sphere offers less surface area, and thus less surface energy, than any other arrangement of the same volume. From this perspective, all other shapes are metastable objects. In this paper, we present and discuss a manifestation of this metastability: the spontaneous alignment of free-standing amorphous nanowires towards, and ultimately parallel to, a flux of directional ion irradiation.

View Article and Find Full Text PDF

Based on the molecular dynamics simulation and an elastic shell model, we investigated the intrinsic loss under dynamic excitations in single walled carbon nanotube (SWCNT) due to the anelastic relaxation mechanism. We quantified the anelastic property of SWCNTs, i.e.

View Article and Find Full Text PDF

Continued progress in the electronics industry depends on downsizing, to a few micrometers, the wire bonds required for wiring integrated chips into circuit boards. We developed an electrodeposition method that exploits the thermodynamic stability of a microscale or nanoscale liquid meniscus to "write" pure copper and platinum three-dimensional structures of designed shapes and sizes in an ambient air environment. We demonstrated an automated wire-bonding process that enabled wire diameters of less than 1 micrometer and bond sizes of less than 3 micrometers, with a breakdown current density of more than 10(11) amperes per square meter for the wire bonds.

View Article and Find Full Text PDF

Studying biology in living cells is methodologically challenging but highly beneficial. Recent advances in nanobiotechnology offer exciting new opportunities to address this challenge. The nanoneedle technology, as an emerging technology that uses a cell membrane-penetrating nanoneedle to probe and manipulate biological processes in living cells, is expected to play an important role in this endeavor.

View Article and Find Full Text PDF

Background: Accessing the interior of live cells with minimal intrusiveness for visualizing, probing, and interrogating biological processes has been the ultimate goal of much of the biological experimental development.

Scope Of Review: The recent development and use of the biofunctionalized nanoneedles for local and spatially controlled intracellular delivery brings in exciting new opportunities in accessing the interior of living cells. Here we review the technical aspect of this relatively new intracellular delivery method and the related demonstrations and studies and provide our perspectives on the potential wide applications of this new nanotechnology-based tool in the biological field, especially on its use for high-resolution studies of biological processes in living cells.

View Article and Find Full Text PDF

A nanomechanical resonator incorporating intrinsically geometric nonlinearity and operated in a highly nonlinear regime is modeled and developed. The nanoresonator is capable of extreme broadband resonance, with tunable resonance bandwidth up to many times its natural frequency. Its resonance bandwidth and drop frequency (the upper jump-down frequency) are found to be very sensitive to added mass and energy dissipation due to damping.

View Article and Find Full Text PDF

The microstructure of type I collagen, consisting of alternating gap and overlap regions with a characteristic D period of approximately 67 nm, enables multifunctionalities of collagen fibrils in different tissues. Implementing near-surface dynamic and static nanoindentation techniques with atomic force microscope, we reveal mechanical heterogeneity along the axial direction of a single isolated collagen fibril from tendon and show that, within the D period, the gap and overlap regions have significantly different elastic and energy dissipation properties, correlating the significantly different molecular structures in these two regions. We further show that such subfibrillar heterogeneity holds in collagen fibrils inside bone and might be intrinsically related to the excellent energy dissipation performance of bone.

View Article and Find Full Text PDF

Understanding piezoelectricity, the linear electromechanical transduction, in bone and tendon and its potential role in mechanoelectric transduction leading to their growth and remodeling remains a challenging subject. With high-resolution piezoresponse force microscopy, we probed piezoelectric behavior in relevant biological samples at different scale levels: from the subfibrillar structures of single isolated collagen fibrils to bone. We revealed that, beyond the general understanding of collagen fibril being a piezoelectric material, there existed an intrinsic piezoelectric heterogeneity within a collagen fibril coinciding with the periodic variation of its gap and overlap regions.

View Article and Find Full Text PDF

Piezoresponse force microscopy was applied to directly study individual type I collagen fibrils with diameters of approximately 100 nm isolated from bovine Achilles tendon. It was revealed that single collagen fibrils behave predominantly as shear piezoelectric materials with a piezoelectric coefficient on the order of 1 pm V(-1), and have unipolar axial polarization throughout their entire length. It was estimated that, under reasonable shear load conditions, the fibrils were capable of generating an electric potential up to tens of millivolts.

View Article and Find Full Text PDF

Studying molecular dynamics inside living cells is a major but highly rewarding challenge in cell biology. We present a nanoscale mechanochemical method to deliver fluorescent quantum dots (QDs) into living cells, using a membrane-penetrating nanoneedle. We demonstrate the selective delivery of monodispersed QDs into the cytoplasm and the nucleus of living cells and the tracking of the delivered QDs inside the cells.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionkj35ehh2qboumb4oqah3f24746br468b): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once