Coke powders in the coking wastewater generated by petroleum refining industry needs to be removed to achieve water reuse for lack of water resources. This study developed a decoking hydrocyclone in the closed coking wastewater circulation treatment system to remove coke powders, which was highly efficient and environmentally friendly. Computational Fluid Dynamics (CFD) method was carried out to study the tangential velocity distribution index n-value to guide design of decoking hydrocyclone and experiment was conducted to verify the coke powders removal effect.
View Article and Find Full Text PDFIn this study, we performed micro-scale dynamic laminar flow extraction and site-specific in situ chloride concentration measurements. Surface-enhanced Raman spectroscopy was utilized to investigate the diffusion process of chloride ions from an oil phase to a water phase under laminar flow. In contrast to common logic, we used SERS intensity gradients of Rhodamine 6G to quantitatively calculate the concentration of chloride ions at specific positions on a microfluidic chip.
View Article and Find Full Text PDF