Publications by authors named "Yu-Lin Shen"

Structural fiber-reinforced polymer (FRP) composite materials consisting of a polymer matrix reinforced with layers of high-strength fibers are used in numerous applications, including but not limited to spacecraft, vehicles, buildings, and bridges. Researchers in the past few decades have suggested the necessary integration of sensors (e.g.

View Article and Find Full Text PDF

Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) can visualize the spatial distribution characteristics of molecules in tissues in situ, in which the matrix plays a key role. In this paper, we propose a platinum nanomaterial pre-coated matrix, which can be prepared in bulk by sputtering platinum nanoparticles onto slides using an ion sputterer and then used for MALDI-MS analysis by placing tissue sections on the matrix. We used this matrix for MALDI-MS imaging analysis of corn kernels and germinated wheat sections, and the results show that triacylglycerides were mainly distributed in the embryo of corn kernels and germinated wheat, and sugars were mainly distributed in the endosperm, with the highest content of disaccharides.

View Article and Find Full Text PDF

Surface wrinkling instability in thin films attached to a compliant substrate is a well-recognized form of deformation under mechanical loading. The influence of the loading history on the formation of instability patterns has not been studied. In this work, the effects of the deformation history involving different loading sequences were investigated via comprehensive large-scale finite element simulations.

View Article and Find Full Text PDF

A comprehensive numerical study of three-dimensional surface instability patterns is presented. The formation of wrinkles is a consequence of deformation instability when a thin film, bonded to a compliant substrate, is subject to in-plane compressive loading. We apply a recently developed computational approach to directly simulate complex surface wrinkling from pre-instability to post-instability in a straightforward manner, covering the entire biaxial loading spectrum from pure uniaxial to pure equi-biaxial compression.

View Article and Find Full Text PDF

There is a large difference between the sedimentary environment and maturity of organic matter between marine shale and marine-continental transitional shale. It is of great significance to discuss the effect of inorganicminerals on the pores for marine-continental transitional shale gas exploration. In this study, scanning electron microscopy (SEM), low temperature liquid nitrogen adsorption and Xray diffraction (XRD) were conducted on eight marine-continental transitional shale samples from the Ningwu Basin, Shanxi Province, China.

View Article and Find Full Text PDF

This is the first report on the coating of diamond dicing blades with metallic glass (MG) coating to reduce chipping when used to cut Si, SiC, sapphire, and patterned sapphire substrates (PSS). The low coefficient-of-friction (CoF) of Zr-based MG-coated dicing blades was shown to reduce the number and size of chips, regardless of the target substrate. Overall, SiC, sapphire and PSS were most affected by chipping, due to the fact that higher cutting forces were needed for the higher hardness of SiC, sapphire and PSS.

View Article and Find Full Text PDF

For structures consisting of a thin film bonded to a compliant substrate, wrinkling of the thin film is commonly observed as a result of mechanical instability. Although this surface undulation may be an undesirable feature, the development of new functional devices has begun to take advantage of wrinkled surfaces. The wrinkled structure also serves to improve mechanical resilience of flexible devices by suppressing crack formation upon stretching and bending.

View Article and Find Full Text PDF

Molecular engineering is significantly important for developing electron donor and acceptor materials of active layers in organic photovoltaics (OPVs). The OPVs based on halogenated donors frequently produced high power conversion efficiencies. Here, based upon density functional theory calculations with optimally tuned range separation parameters and solid polarization effects, we studied the effects of donor halogenation on molecular geometries, electronic structures, excitation, and spectroscopic properties for F ZnPc ( n = 0, 4, 8, 16) and Cl SubPc ( n = 0, 6) monomers and the complexes with C as well as the photoinduced direct charge transfer (CT), exciton dissociation (ED), and charge recombination (CR) processes that were described by rate constants calculated using Marcus theory.

View Article and Find Full Text PDF

Atomic force microscopy (AFM) indentation is a popular method for characterizing the micromechanical properties of soft materials such as living cells. However, the mechanical data obtained from deep indentation measurements can be difficult and problematic to interpret as a result of the complex geometry of a cell, the nonlinearity of indentation contact, and constitutive relations of heterogeneous hyperelastic soft components. Living MDA-MB-231 cells were indented by spherical probes to obtain morphological and mechanical data that were adopted to build an accurate finite element model (FEM) for a parametric study.

View Article and Find Full Text PDF

Trigeminal neuralgia (TN) is one of the most intense forms of facial pain. It has been reported that the P2X receptor plays a crucial role in facilitating pain transmission, and the calcitonin-gene-related peptide (CGRP) from trigeminal ganglia (TGs) might perform differing function in nociceptive afferent input transmission. The present study investigated whether emodin can affect TN pain transmission by suppressing the expression of P2X receptors and CGRP in TGs.

View Article and Find Full Text PDF

Novel dye sensitizers are highly expected in the development of dye-sensitized solar cells (DSSCs) because dye sensitizers can significantly affect the power conversion efficiency (PCE). Here, the molecular docking strategy is applied to design panchromatic dye sensitizers for DSSCs to improve light-harvesting efficiency covering the full solar spectrum. Considering the broad absorption bands of tetraanthracenylporphyrins (TAnPs) and tetraazuleneporphyrins (TAzPs), based upon porphyrin dye sensitizer YD2-o-C8, the panchromatic dye sensitizers coded as H(TAnP)-α, H(TAzP)-γ, H(TAzP)-ε, and H(TAzP)-δ are designed by the substitution of the porphyrin-ring in YD2-o-C8 with TAnPs and TAzPs moieties at different positions.

View Article and Find Full Text PDF

Trigeminal neuralgia (TN) is a kind of recurrent transient and severe pain that is limited to the trigeminal nerve in one or more branches. The clinical incidence of TN is high, which seriously affects the quality of life of the patients and is difficult to cure. The present study investigated the effects of tetramethylpyrazine (TMP) on TN induced by chronic constriction injury of the infraorbital nerve (ION-CCI) in rats.

View Article and Find Full Text PDF

This paper reports on the use of Zr-based (Zr53Cu33Al9Ta5) thin film metallic glass (TFMG) for the coating of syringe needles and compares the results with those obtained using titanium nitride and pure titanium coatings. TFMG coatings were shown to reduce insertion forces by ∼66% and retraction forces by ∼72%, when tested using polyurethane rubber block. The benefits of TFMG-coated needles were also observed when tested using muscle tissue from pigs.

View Article and Find Full Text PDF

The design and development of novel dye sensitizers are effective method to improve the performance of dye-sensitized solar cells (DSSCs) because dye sensitizers have significant influence on photo-to-current conversion efficiency. In the procedure of dye sensitizer design, it is very important to understand how to tune their electronic structures and related properties through the substitution of electronic donors, acceptors, and conjugated bridges in dye sensitizers. Here, the electronic structures and excited-state properties of organic JK dye sensitizers are calculated by using density functional theory (DFT) and time dependent DFT methods.

View Article and Find Full Text PDF

In 2013, the World Health Organization reported the first case of human infection with a new influenza A (H7N9) virus in China. This has caused damage and panic within certain areas in China. Therefore, analysis of this virus with bioinformatics technology is very necessary.

View Article and Find Full Text PDF

The electronic structures and excitation properties of dye sensitizers determine the photon-to-current conversion efficiency of dye sensitized solar cells (DSSCs). In order to understand the different performance of porphyrin dye sensitizers YD2 and YD2-o-C8 in DSSC, their geometries and electronic structures have been studied using density functional theory (DFT), and the electronic absorption properties have been investigated via time-dependent DFT (TDDFT) with polarizable continuum model for solvent effects. The geometrical parameters indicate that YD2 and YD2-o-C8 have similar conjugate length and charge transfer (CT) distance.

View Article and Find Full Text PDF

The photon to current conversion efficiency of dye-sensitized solar cells (DSCs) can be significantly affected by dye sensitizers. The design of novel dye sensitizers with good performance in DSCs depend on the dye's information about electronic structures and optical properties. Here, the geometries, electronic structures, as well as the dipole moments and polarizabilities of organic dye sensitizers C343 and 20 kinds of NKX derivatives were calculated using density functional theory (DFT), and the computations of the time dependent DFT with different functionals were performed to explore the electronic absorption properties.

View Article and Find Full Text PDF

Without using any templates or surfactants, this study develops a high-yield process to prepare vertical Ag-Pt core-shell nanowires (NWs) by thermally assisted photoreduction of Ag NWs and successive galvanic replacement between Ag and Pt ions. The clean surface of Ag nanowires allows Pt ions to reduce and deposit on it and forms a compact sheath comprising Pt nanocrystals. The core-shell structural feature of the NWs thus produced has been demonstrated via transmission electron microscopy observation and Auger electron spectroscopy elemental analysis.

View Article and Find Full Text PDF

In this study, TiO2 thin film photocatalyst on carbon fibers was used to synthesize ultra-long single crystalline Pt nanowires via a simple photoreduction route (thermally activated photoreduction). It also acted as a co-catalytic material with Pt. Taking advantage of the high-aspect ratio of the Pt nanostructure as well as the excellent catalytic activity of TiO2, this hybrid structure has the great potential as the active anode in direct methanol fuel cells.

View Article and Find Full Text PDF

A template- and surfactant-free process, thermally assisted photoreduction, is developed to prepare vertically grown ultra-long Pt nanowires (NWs) (about 30-40 nm in diameter, 5-6 μm in length, and up to 80 NWs/100 μm2 in the wire density) on TiO2 coated substrates, including Si wafers and carbon fibers, with the assistance of the photocatalytic ability and semiconductor characteristics of TiO2. A remarkable aspect ratio of up to 200 can be achieved. TEM analytical results suggest that the Pt NWs are single-crystalline with a preferred 〈111〉 growth direction.

View Article and Find Full Text PDF

The geometries, electronic structures and the electronic absorption spectra of three kinds of ruthenium complexes, which contain tridentate bipyridine-pyrazolate ancillary ligands, were studied using density functional theory (DFT) and time-dependent DFT. The calculated results indicate that: (1) the strong conjugated effects are formed across the pyrazoalte-bipyridine groups; (2) the interfacial electron transfer between electrode and the dye sensitizers is an electron injection processes from the excited dyes to the conduction band of TiO2; (3) the absorption bands in visible region have a mixed character of metal-to-ligand charge transfer and ligand-to-ligand charge transfer, but the main character of absorption bands near UV region ascribe to π→π* transitions; (4) introducing pyrazolate and -NCS groups are favorable for intra-molecular charge transfer, and they are main chromophores that contribute to the sensitization of photon-to-current conversion processes, but introducing -Cl and the terminal group -CF3 are unfavorable to improve the dye performance in dye sensitized solar cells.

View Article and Find Full Text PDF

Background: Systematic aerobe training has positive effects on the compliance of dedicated arterial walls. The adaptations of the arterial structure and function are associated with the blood flow-induced changes of the wall shear stress which induced vascular remodelling via nitric oxide delivered from the endothelial cell. In order to assess functional changes of the common carotid artery over time in these processes, a precise measurement technique is necessary.

View Article and Find Full Text PDF

A new hybrid material was developed by the template-free hybridization of weak acidic pink red B (APRB, C.I. 18073) with BaSO(4).

View Article and Find Full Text PDF