While tumor organoids have revolutionized cancer research by recapitulating the cellular architecture and behaviors of real tumors in vitro, their lack of functional vasculature hinders their attainment of full physiological capabilities. Current efforts to vascularize organoids are struggling to achieve well-defined vascular networks, mimicking the intricate hierarchy observed in vivo, which restricts the physiological relevance particularly for studying tumor progression and response to therapies targeting the tumor vasculature. An innovative vascularized patient-derived tumor organoids (PDTOs)-on-a-chip with hierarchical, tumor-specific microvasculature is presented, providing a versatile platform to explore tumor-vascular dynamics and antivascular drug efficacy.
View Article and Find Full Text PDFThe tumor-treating fields (TTFields) technology has revolutionized the management of recurrent and newly diagnosed glioblastoma (GBM) cases. To ameliorate this treatment modality for GBM and other oncological conditions, it is necessary to understand the biophysical principles of TTFields better. In this study, we further analyzed the mechanism of the electromagnetic exposure with varying frequencies and electric field strengths on cells in mitosis, specifically in telophase.
View Article and Find Full Text PDFThuja sutchuenensis Franch. is an endangered species in southwest China, distributed sporadically in mountainous areas. Soil property and soil fungal community play a crucial role in plant growth and survival.
View Article and Find Full Text PDFFranch. is an endangered species in southwestern China, primarily distributed in 800-2,100 m of inaccessible mountainous areas. Rhizosphere soil physicochemical properties and bacterial communities play an essential role in managing plant growth and survival.
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
August 2017
Chinese rare minnow (Gobiocypris rarus) embryos were used as an experimental model to investigate the effects of CuInS/ZnS quantum dots (QDs) on the early life stages of G. rarus. Normal developmental parameters (survival rate, body length and average heart rate), biomarker genes [stress response (Hsp70), detoxification (Cyp1a), organizer function and axis formation (Wnt8α), and muscle (Mstn)], enzymatic activity and DNA damage were recorded as endpoints in the developing embryos/larvae after exposure until 96h post-fertilization (hpf).
View Article and Find Full Text PDFIn order to reduce the carbon source for biological short-cut denitrification, Fe-activated carbon was used to enhance nitrogen removal in the absence of organic carbon, and the influences of the Fe/C mass ratio and initial pH value on the nitrogen removal efficiency were explored. The results showed that the nitrite removal efficiency increased from 7.4% to 31.
View Article and Find Full Text PDFThe toxic effects of CDs on rare minnow () embryos at different developmental stages were investigated. The results showed that rare minnow embryos had decreased spontaneous movements, body length, increased heart rate, pericardial edema, yolk sac edema, tail/spinal curvature, various morphological malformations, and decreased hatching rate. Biochemical analysis showed the CDs exposure significantly inhibited the activity of Na/K-ATPase and Ca-ATPase and increased the MDA contents and the activity of SOD, CAT, and GPX.
View Article and Find Full Text PDF