Publications by authors named "Yu-Lan Hu"

BACKGROUND Diabetic peripheral neuropathy (DPN) is a prevalent complication affecting over 60% of type 2 diabetes patients. Early diagnosis is challenging, leading to irreversible impacts on quality of life. This study explores the predictive value of combining HbA1c and Neutrophil-to-Lymphocyte Ratio (NLR) for early DPN detection.

View Article and Find Full Text PDF

Objectives: In order to assess the biosafety of HAuNS using zebrafish models and the cancer cell lines HepG2, HEK293, and A549, this study prepared HAuNS in a variety of sizes and alterations.

Methods: By oxidizing cobalt nanoparticles encased in gold shells, HAuNS were created. In the meantime, PEG- and PEI-coated HAuNS were created.

View Article and Find Full Text PDF

Neural stem cells (NSCs), capable of ischemia-homing, regeneration, and differentiation, exert strong therapeutic potentials in treating ischemic stroke, but the curative effect is limited in the harsh microenvironment of ischemic regions rich in reactive oxygen species (ROS). Gene transfection to make NSCs overexpress brain-derived neurotrophic factor (BDNF) can enhance their therapeutic efficacy; however, viral vectors must be used because current nonviral vectors are unable to efficiently transfect NSCs. The first polymeric vector, ROS-responsive charge-reversal poly[(2-acryloyl)ethyl(p-boronic acid benzyl)diethylammonium bromide] (B-PDEA), is shown here, that mediates efficient gene transfection of NSCs and greatly enhances their therapeutics in ischemic stroke treatment.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) have been regarded as potential targeting vehicles and demonstrated to exert therapeutic benefits for brain diseases. Direct homing to diseased tissue is crucial for stem cell-based therapy. In this study, a peptide-based targeting approach was established to enhance cell homing to cerebral ischemic lesion.

View Article and Find Full Text PDF

Carbon nanotubes (CNTs) have poor colloid stability in biological media and exert cytotoxic effects on mesenchymal stem cells (MSCs). Modification with polymeric surfactant is a widely used strategy to enhance water dispersibility of CNTs. This study investigated the toxic effects of various Pluronic F-68 (PF68)-coated multi-walled CNTs (MWCNTs) on rat bone marrow-derived MSCs.

View Article and Find Full Text PDF

The toxicity evaluation of inorganic nanoparticles has been reported by an increasing number of studies, but toxicity studies concerned with biodegradable nanoparticles, especially the neurotoxicity evaluation, are still limited. For example, the potential neurotoxicity of Polysorbate 80-modified chitosan nanoparticles (Tween 80-modified chitosan nanoparticles, TmCS-NPs), one of the most widely used brain targeting vehicles, remains unknown. In the present study, TmCS-NPs with a particle size of 240 nm were firstly prepared by ionic cross-linking of chitosan with tripolyphosphate.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) hold great promise in variety of therapeutic applications including tissue engineering and cancer therapy. Genetic modification of MSCs can be used to enhance the therapeutic effect of MSCs by facilitating a specific function or by transforming MSCs into more effective gene therapy tools. However, the successful generation of genetically modified MSCs is often limited by the poor transfection efficiency or high toxicity of available transfection reagents.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) are a promising tool for delivering of therapeutic agents in cancer treatment. In the present study, our findings suggested that both i.v.

View Article and Find Full Text PDF

Recent studies have shown the ability of mesenchymal stem cells (MSCs) to migrate toward and engraft into the tumor sites, which provides a potential for their use as carriers for cancer gene therapy. Here, we describe the strategies of using MSCs as carriers for cancer gene therapy using a nonviral transfection method.

View Article and Find Full Text PDF

The applications of targeting gene delivery systems in tumor therapy have attracted extensive attention of researchers in recent years, as they can selectively deliver the therapeutic gene to tumor sites, improve the success rate of gene therapy and reduce the side effects. Therefore, design and development of novel gene delivery vehicles have been a hot area of current research. Recent studies have shown that mesenchymal stem cells (MSCs) have the ability to migrate towards and engraft into the tumor sites.

View Article and Find Full Text PDF

Effective chemotherapy for glioblastoma requires a carrier that can penetrate the blood-brain barrier (BBB) and subsequently target the glioma cells. Dual-targeting doxorubincin (Dox) liposomes were produced by conjugating liposomes with both folate (F) and transferrin (Tf), which were proven effective in penetrating the BBB and targeting tumors, respectively. The liposome was characterized by particle size, Dox entrapment efficiency, and in vitro release profile.

View Article and Find Full Text PDF

This study evaluated the potential of utilizing transfected pTGFβ-1 gene-engineered rat mesenchymal stem cells (MSCs) using nonviral vector to promote cartilage regeneration. Pullulan-spermine was used as the nonviral gene vector and gelatin sponge was used as the scaffold. MSCs were engineered with TGF-β1 gene with either the three-dimensional (3D) reverse transfection system or the two-dimensional (2D) conventional transfection system.

View Article and Find Full Text PDF

Drug resistance is one of the critical reasons leading to failure in chemotherapy. Enormous studies have been focused on increasing intracellular drug accumulation through inhibiting P-glycoprotein (Pgp). Meanwhile, we found that major vault protein (MVP) may be also involved in drug resistance of human breast cancer MCF-7/ADR cells by transporting doxorubicin (DOX) from the action target (i.

View Article and Find Full Text PDF

The success of gene therapy relies largely on an effective targeted gene delivery system. Till recently, more and more targeted delivery carriers, such as liposome, nanoparticles, microbubbles, etc., have been developed.

View Article and Find Full Text PDF

Background: The success of gene transfection is largely dependent on the development of a vehicle or vector that can efficiently deliver a gene to cells with minimal toxicity.

Methods: A liver cancer-targeted specific peptide (FQHPSF sequence) was successfully synthesized and linked with chitosan-linked polyethylenimine (CP) to form a new targeted gene delivery vector called CPT (CP/peptide). The structure of CPT was confirmed by (1)H nuclear magnetic resonance spectroscopy and ultraviolet spectrophotometry.

View Article and Find Full Text PDF

Current efforts had been made to undertake a three-dimensional (3-D) reverse transfection of bone marrow-derived mesenchymal stem cells (BM-MSCs) in PLGA scaffolds. As a kind of multipotent stem cells, BM-MSCs show great potential and tremendous capacity in the gene transfection field and PLGA 3-D scaffold has been shown to be a biomaterial that provides structural support to cells proliferation and tissue engineering. The objective of this study was to assess the transfection efficiency of BM-MSCs with a 3-D reverse transfection method by using PLGA scaffold and observe the SEM photographs of BM-MSCs cultured on PLGA scaffold.

View Article and Find Full Text PDF

Background: Although there are a number of reports regarding the toxicity evaluation of inorganic nanoparticles, knowledge on biodegradable nanomaterials, which have always been considered safe, is still limited. For example, the toxicity of chitosan nanoparticles, one of the most widely used drug/gene delivery vehicles, is largely unknown. In the present study, the zebrafish model was used for a safety evaluation of this nanocarrier.

View Article and Find Full Text PDF

Background: Multidrug resistance remains a major obstacle to successful cancer chemotherapy. Some chemical multidrug resistance inhibitors, such as ciclosporin and verapamil, have been reported to reverse resistance in tumor cells. However, the accompanying side effects have limited their clinical application.

View Article and Find Full Text PDF

Purpose: To enhance the level and prolong the duration of gene expression for gene-engineered rat mesenchymal stem cells (MSCs) using non-viral vector.

Methods: A novel transfection system based on reverse transfection method and three-dimensional (3D) scaffold was developed. The reverse gene transfection system was evaluated for transfection efficiency compared to conventional methods.

View Article and Find Full Text PDF

In present study, we identified a novel membrane immunoglobulin M isotype from zebrafish (Danio rerio), which was designated as mIgM-2, adding a new member to the Immunoglobulin family in teleost fish. The full length of cloned mIgM-2 cDNA was 611 bp, encoding 150 amino acids. The putative mIgM-2 protein sequence consists of one constant region and a trans-membrane region.

View Article and Find Full Text PDF

Objectives: The aim was to prepare novel Ganoderma lucidum polysaccharide nanoparticles and to evaluate the physicochemical properties and anti-tumour activity in in-vitro cytotoxicity studies using HepG2, HeLa and A549 cancer cell lines, and growth promotion effects on mouse spleen cells.

Methods: Chitosan nanoparticles loaded with G. lucidum polysaccharide were prepared using the ion-revulsion method.

View Article and Find Full Text PDF

C1qs are key components of the classical complement pathway. They have been well documented in human and mammals, but little is known about their molecular and functional characteristics in fish. In the present study, full-length cDNAs of c1qA, c1qB, and c1qC from zebrafish (Danio rerio) were cloned, revealing the conservation of their chromosomal synteny and organization between zebrafish and other species.

View Article and Find Full Text PDF

The targeting drug delivery systems (TDDS) have attracted extensive attention of researchers in recent years. More and more drug/gene targeted delivery carriers, such as liposome, magnetic nanoparticles, ligand-conjugated nanoparticles, microbubbles, etc., have been developed and under investigation for their application.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: