Publications by authors named "Yu-Kyoung Kim"

Article Synopsis
  • - Magnesium implants often lose strength quickly after being implanted due to bioabsorption, increasing the risk of rupture, but a new polymer coating can help manage this issue.
  • - The biosafe coating combines polycaprolactone (PCL) and MXenes, which protects the implants for up to 28 days and promotes cell growth without being toxic.
  • - When exposed to near-infrared light for just 20 minutes, the coating degrades effectively, allowing for controlled bioabsorption and revealing the magnesium substrate, even in liquid environments.
View Article and Find Full Text PDF

Objective: We evaluated the adequacy of microbiological tests in patients withholding or withdrawing life-sustaining treatment (WLST) at the end stage of life.

Setting: The study was conducted at 2 tertiary-care referral hospitals in Daegu, Republic of Korea.

Design: Retrospective cross-sectional study.

View Article and Find Full Text PDF

Hydrogels have gained significant attention as biomaterials due to their remarkable properties resembling those of the extracellular matrix (ECM). In the present investigation, we successfully synthesized interpenetrating polymer network (IPN) hydrogels using gelatin methacryloyl (GelMA) and sodium alginate (SA), incorporating various concentrations of lithium chloride (LiCl; 0, 5, and 10 mM), aiming to develop a hydrogel scaffold for bone regeneration. Notably, the compressive modulus of the IPN hydrogels remained largely unaffected upon the inclusion of LiCl.

View Article and Find Full Text PDF

Various poly(lactic-co-glycolic acid) (PLGA) microspheres loaded with the ginger fraction were fabricated by controlling the electrospray parameters and their biocompatibility and antibacterial activity were identified in this study. The morphology of the microspheres was observed using scanning electron microscopy. The core-shell structures of the microparticles and the presence of ginger fraction in the microspheres were confirmed by fluorescence analysis using a confocal laser scanning microscopy system.

View Article and Find Full Text PDF

Magnesium (Mg), as a biodegradable material, is a promising candidate for orthopedic surgery. Long-bone fractures usually occur in cancellous-bone-rich epiphysis at each end or the cortical-rich diaphysis in the center, with different bone healing processes. Little is known about the differences in results between the two regions when applying Mg implants.

View Article and Find Full Text PDF

Metallic implants (mesh) for guided bone regeneration can result in foreign body reactions with surrounding tissues, infection, and inflammatory reactions caused by micro-organisms in the oral cavity after implantation. This study aimed to reduce the possibility of surgical failure caused by microbial infection by loading antibacterial manuka oil in a biocompatible nanostructure surface on Ti and to induce stable bone regeneration in the bone defect. The manuka oil from New Zealand consisted of a rich β-triketone chemotype, leptospermone, which showed strong inhibitory effects against several bacteria, even at very low oil concentrations.

View Article and Find Full Text PDF

In this study, a hydrogel using single and double crosslinking was prepared using GelMA, a natural polymer, and the effect was evaluated when the double crosslinked hydrogel and tannic acid were treated. The resulting hydrogel was subjected to physicochemical property evaluation, biocompatibility evaluation, and animal testing. The free radicals generated through APS/TEMED have a scaffold form with a porous structure in the hydrogel, and have a more stable structure through photo crosslinking.

View Article and Find Full Text PDF

Gelatin methacryloyl (GelMA) has been widely studied as a biomaterial for tissue engineering. Most studies focus on mammalian gelatin, but certain factors, such as mammalian diseases and diet restrictions, limit the use of mammalian gelatin. Thus, fish gelatin has received much attention as a substitute material in recent years.

View Article and Find Full Text PDF

In the field of bone tissue, maintaining adequate mechanical strength and tissue volume is an important part. Recently, biphasic calcium phosphate (BCP) was fabricated to solve the shortcomings of hydroxyapatite (HA) and beta-tricalcium phosphate (β-TCP), and it is widely studied in the field of bone-tissue engineering. In this study, a composite hydrogel was fabricated by applying BCP to gelatin methacrylate (GelMA).

View Article and Find Full Text PDF

Cannulated screws have a structure for inserting a guide wire inside them to effectively correct complicated fractures. Magnesium, an absorbable metal used to manufacture cannulated screws, may decompose in the body after a certain period of implantation. The hydrogel formed by hyaluronic acid (HA) and polygalacturonic acid (PGA) has been used into Mg-based cannulated screws to prevent bone resorption owing to the rapid corrosion of Mg with unfavorable mechanical properties and a high ambient pH.

View Article and Find Full Text PDF

Cannulated screws, containing an internal hole for inserting a guide pin, are commonly used in the management of bone fractures. Cannulated Mg screws can be biodegraded easily because their increased surface area including that of the inner hole rapidly reacts with body fluids. To delay biodegradation of cannulated Mg screws and improve bone regeneration, we developed a specific type of screw by injecting it with gelatin hydrogels [10 wt % gelatin with 0.

View Article and Find Full Text PDF

Guided bone regeneration using a perforated titanium membrane is actively used in oral and orthopedic surgeries to provide space for the subsequent filling of a new bone in the case of bone defects and to achieve proper bone augmentation and reconstruction. The surface modification of a titanium membrane using a strontium-substituted calcium phosphate coating has become a popular trend to provide better bioactivity and biocompatibility on the membrane for improving the bone regeneration because strontium can stimulate not only the differentiation of osteoblasts but also inhibit the differentiation of osteoclasts. The strontium-doped calcium phosphate coating on the titanium mesh was formed by the cyclic precalcification method, and its effects on bone regeneration were evaluated by in vitro analysis of osteogenesis-related gene expression and in vivo evaluation of osteogenesis of the titanium mesh using the rat calvarial defect model in this study.

View Article and Find Full Text PDF

Guided bone regeneration is a therapeutic method that uses a barrier membrane to provide space available for new bone formation at sites with insufficient bone volume. Magnesium with excellent biocompatibility and mechanical properties has been considered as a promising biodegradable material for guided bone regeneration; however, the rapid degradation rate in the physiological environment is a problem to be solved. In this study, surface modification of pure magnesium mesh was conducted by plasma electrolytic oxidation and hydrothermal treatment to form a densely protective layer on the Mg substrate.

View Article and Find Full Text PDF

Background: Hydrogen gas formed by magnesium (Mg) screw corrosion can accumulate around the implant and create bone cysts, long-term osteolysis lesions, and bone healing delay. Thus, several authors currently do not recommend Mg implants for clinical use. In contrast, bone morphogenetic proteins (BMP)-2 have a very strong osteoinductive activity.

View Article and Find Full Text PDF

This study compares the mechanical properties of commercially available CAD/CAM (Computer-Aided Design/Computer-Aided Manufacturing) millable dental blocks including Vita Enamic, Lava Ultimate, and MAZIC Duro. All the discs were cut in dimension of 1.2 mm in thickness and 12 mm in diameter, ground up to #1200 Sic papers and polished.

View Article and Find Full Text PDF

To control the bio-absorption rate of Mg alloy and improve its biocompatibility, a BMP-2 of various concentrations (20, 50, and 100 ng/mL) was immobilized in the carrier layer formed by micro-arc oxidation + hydrothermal treatment on the surface of Mg alloy. Their morphological and chemical properties were evaluated by FE-SEM with EDS and XRD. The electrochemical corrosion behavior was examined, and the cytotoxicity was assessed by WST and ALP assay.

View Article and Find Full Text PDF

A polymer coating as polycaprolactone (PCL) is applied to improve the initial corrosion resistance of biodegradable magnesium. In addition, plasma electrolytic oxidation (PEO) is performed to increase adhesion between the polymer and the metal. However, when a complex-shaped material such as a screw is implanted in a bone, the surface coatings are locally damaged, and the protective role of the coating is not sufficiently maintained.

View Article and Find Full Text PDF

Beta-tricalcium phosphate bioceramics are widely used as bone replacement scaffolds in bone tissue engineering. The purpose of this study is to develop beta-tricalcium phosphate scaffold with the optimum mechanical properties and porosity and to identify the effect of N-acetyl-L-cysteine loaded to beta-tricalcium phosphate scaffold on the enhancement of biocompatibility. The various interconnected porous scaffolds were fabricated using slurries containing various concentrations of beta-tricalcium phosphate and different coating times by replica method using polyurethane foam as a passing material.

View Article and Find Full Text PDF

Magnesium alloys are biodegradable metals receiving increasing attention, but the clinical applications of these materials are delayed by concerns over the rapid corrosion rate and gas formation. Unlike corrosion, which weakens mechanical properties, the gas formation issue has received little attention. Therefore, we evaluated the gas formation and biological effects for Mg implants through preclinical (immersed in Earle's balanced salt solution and ) and clinical studies.

View Article and Find Full Text PDF

TiO₂ nanotubes (TNT) formation is beneficial for improving bone cell-material interaction and drug delivery for Ti dental implants. Among the natural drugs to be installed in TNT, selected propolis has antibacterial and anti-inflammatory properties. It is a resinous natural product which is collected by the honeybees from the various types of plants with their salivary enzymes.

View Article and Find Full Text PDF

In this study, a two-step surface treatment was developed to restrain the rapid primary degradation of a biodegradable Mg alloy and to improve their biocompatibility. Micro arc oxidation (MAO) coating was performed in alkaline electrolytes such as 1.0 M NaOH with 0.

View Article and Find Full Text PDF

Chemical combinations of Ca-P produced via plasma electrolytic oxidation (PEO) and a hydrothermal treatment were fabricated to improve the initial corrosion resistance and biocompatibility of a biodegradable Mg-3Al-1Zn-1.5Ca alloy. For the formation of an amorphous calcium phosphate composite layer on the surface of a magnesium alloy, a PEO layer composed of MgO and Mg(PO) was formed by PEO in electrolytes containing preliminary phosphate ions.

View Article and Find Full Text PDF

Surface modification to improve the corrosion resistance and biocompatibility of the Mg-Al-Zn-Ca alloy was conducted via plasma electrolytic oxidation (PEO) in an electrolyte that included phosphate. Calcium phosphate can be easily induced on the surface of a PEO coating that includes phosphate in a physiological environment because Ca(2+) ions in body fluids can be combined with PO4 (3-). Cytotoxicity of the PEO coating formed in electrolytes with various amounts of Na3PO4 was identified.

View Article and Find Full Text PDF

This article demonstrates the use of hybrid nanofibers to improve the biodegradation rate and biocompatibility of AM50 magnesium alloy. Biodegradable hybrid membrane fiber layers containing nano-hydroxyapatite (nHA) particles and poly(lactide)(PLA) nanofibers were coated layer-by-layer (LbL) on AM50 coupons using a facile single-step air jet spinning (AJS) approach. The corrosion performance of coated and uncoated coupon samples was investigated by means of electrochemical measurements.

View Article and Find Full Text PDF

The warming acupuncture for hyperthermia therapy is made of STS304. However, its needle point cannot be reached to a desirable temperature due to heat loss caused by low thermal conductivity, and the quantification of stimulation condition and the effective standard establishment of warming acupuncture are required as a heat source. Accordingly, in this study, after Ag-Cu alloys with different composition ratios were casted and then mixed with additives to improve their physical and mechanical properties, the thermal conductivity and biocompatibility of the alloy specimens were evaluated for selecting suitable material.

View Article and Find Full Text PDF