J Phys Chem Lett
September 2020
CsPbBr is regarded as an outstanding luminescent material with good thermal stability and optical performance. However, the mechanism of green emission from CsPbBr has been controversial. Here we show that isolated CsPbBr nanoparticles embedded within a CsPbBr matrix give rise to a "normal" green luminescence while superfluorescence at longer wavelengths is suppressed.
View Article and Find Full Text PDFPurpose: The purpose of this study was to investigate the feasibility of in vivo imaging of human pancreatic ductal cells by OATP1B3 reporter gene under MRI.
Methods: A human cell line (PANC-1) derived from the pancreatic ductal epithelium was used in this study. After transduction of OATP1B3, the cellular physiological functions and the ability of intracellular uptake of the MRI contrast medium (Gd-EOB-DTPA) were examined.
A 6-membered P-heterocycle has been fused with a polyaromatic framework through intramolecular transformation of anthracene-based phosphine induced by CuCl. The resulting water soluble phosphonium fluorophores exhibit extremely high quantum efficiency along with prominent stability and low toxicity that make them suitable for one- and two-photon imaging purposes.
View Article and Find Full Text PDFThe functions of biomedical imaging, cancer targeting, and controlled release of therapeutic agents were integrated into a drug delivery platform to proof its diagnostic and therapeutic capabilities. This versatile nanocomposite is based on the strategic design of wormlike mesoporous silica nanocarriers that are decorated with extremely small iron oxide nanoparticles, having a prominent T1-weighted Magnetic Resonance Imaging (MRI) signal. The controlled release function was then achieved through the grafting of polyalcohol saccharide derivative ligands onto the surfaces of mesoporous silica nanoparticles to conjugate with boronic acid functionalized gold nanoparticles, which acted as the gate and the source of computed tomography (CT) signals.
View Article and Find Full Text PDFThe combination of a hollow mesoporous structure and a magnetic resonance (MR) contrast agent has shown its potential in simultaneous drug delivery and cell tracking applications. However, the preparation of this kind of nanocomposite is complicated and usually takes several days, which is unsuitable for scaled-up production. To overcome these hurdles, we report herein a facile method to synthesize iron oxide hydroxide functionalized hollow mesoporous silica spheres (FeOOH/HMSS) in a one-step manner.
View Article and Find Full Text PDFThe room-temperature, aqueous-phase synthesis of iron-oxide nanoparticles (IO NPs) with glutathione (GSH) is reported. The simple, one-step reduction involves GSH as a capping agent and tetrakis(hydroxymethyl)phosphonium chloride (THPC) as the reducing agent; GSH is an anti-oxidant that is abundant in the human body while THPC is commonly used in the synthesis of noble-metal clusters. Due to their low magnetization and good water-dispersibility, the resulting GSH-IO NPs, which are 3.
View Article and Find Full Text PDFNovel water-soluble noncovalent adducts of the heterometallic copper subgroup complexes and human serum albumin (HSA) display strong phosphorescence, internalize into HeLa cells and can be used in time-resolved fluorescent imaging.
View Article and Find Full Text PDFA novel T1 agent, antiferromagnetic α-iron oxide-hydroxide (α-FeOOH) nanocolloids with a diameter of 2-3 nm, has been successfully prepared. These nanocolloids, together with a post synthetic strategy performed in mesoporous silica, are a great improvement over the low T1-weighted contrast common in traditional magnetic silica nanocomposites. The intrinsic antiferromagnetic goethite (α-FeOOH) shows very low magnetization (M(z)) of 0.
View Article and Find Full Text PDFTaking advantage of the character of Au nanorods (NRs) to absorb NIR light, a NIR-responsive oligonucleotide-gated ensemble is developed to perform intracellular drug delivery. Using an oligonucleotide bio-gate enables siRNA release into cells for translational regulation as well as cytotoxicity in anti-cancer drug delivery.
View Article and Find Full Text PDF