Publications by authors named "Yu-Jin Huh"

Brain aging is a complex biological process that is affected by both genetic background and environment. The transcriptomic analysis of aged human and rodent brains has been applied to identify age-associated molecular and cellular processes for which intervention could possibly restore declining brain functions induced by aging. However, whether these age-associated genetic alterations are indeed involved in the healthy aging of the brain remains unclear.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a well-known age-related neurodegenerative disorder associated with longer lifespans and rapidly aging populations. The pathophysiological mechanism is a complex progress involving cellular damage such as mitochondrial dysfunction and protein homeostasis. Age-mediated degenerative neurological disorders can reduce the quality of life and also impose economic burdens.

View Article and Find Full Text PDF

Parkinson's disease (PD) is characterized by selective degeneration of dopaminergic (DAergic) neurons in the substantia nigra pars compacta (SNpc). α-synuclein (α-syn) is known to regulate mitochondrial function and both PINK1 and Parkin have been shown to eliminate damaged mitochondria in PD. Mechanistic target of rapamycin (mTOR) is expressed in several distinct subcellular compartments and mediates the effects of nutrients, growth factors, and stress on cell growth.

View Article and Find Full Text PDF

Bipolar cells transmit stimuli via graded changes in membrane potential and neurotransmitter release is modulated by Ca(2+) influx through L-type Ca(2+) channels. The purpose of this study was to determine whether the α1c subunit of L-type voltage-gated Ca(2+) channel (α1c L-type Ca(2+) channel) colocalizes with protein kinase C alpha (PKC-α), which labels rod bipolar cells. Retinal whole mounts and vertical sections from mouse, hamster, rabbit, and dog were immunolabeled with antibodies against PKC-α and α1c L-type Ca(2+) channel, using fluorescein isothiocyanate (FITC) and Cy5 as visualizing agents.

View Article and Find Full Text PDF