Pyrroline-5-carboxylate reductase (P5CR), an enzyme with conserved housekeeping roles, is involved in the etiology of cutis laxa. While previous work has shown that the R119G point mutation in the P5CR protein is involved, the structural mechanism behind the pathology remains to be elucidated. In order to probe the role of the R119G mutation in cutis laxa, we performed molecular dynamics (MD) simulations, essential dynamics (ED) analysis, and Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) binding free energy calculations on wild type (WT) and mutant P5CR-NAD complex.
View Article and Find Full Text PDFPyrroline-5-carboxylate reductase (P5CR) encoded by PYCR1 gene is a housekeeping enzyme that catalyzes the reduction of P5C to proline using NAD(P)H as the cofactor. In this study, we used in silico approaches to examine the role of nonsynonymous single-nucleotide polymorphisms in the PYCR1 gene and their putative functions in the pathogenesis of Cutis Laxa. Among the 348 identified SNPs, 15 were predicted to be potentially damaging by both SIFT and PolyPhen tools; of them two SNP-derived mutations, R119G and G206W, have been previously reported to correlate with Cutis Laxa.
View Article and Find Full Text PDF