Background: Rapid and accurate identification of bacteria is required in order to develop effective treatment strategies. Traditional culture-based methods are time-consuming, while MALDI-TOF MS is expensive. The Raman spectroscopy, due to its relatively cost-effectiveness, offers a promising alternative for bacterial identification.
View Article and Find Full Text PDFMolecular hybridization is a well-established strategy for developing new drugs. In the pursuit of promising photosensitizers (PSs) with enhanced photodynamic therapy (PDT) efficiency, a series of novel 5-fluorouracil (5FU) gallium corrole conjugates () were designed and synthesized by hybridizing a chemotherapeutic drug and PSs. Their photodynamic antitumor activity was also evaluated.
View Article and Find Full Text PDFStudy on corrole photosensitizers (PSs) for photodynamic therapy (PDT) has made remarkable progress. Targeted delivery of PSs is of great significance for enhancing therapeutic efficiency, decreasing the dosage, and reducing systemic toxicity during PDT. The development of PSs that can be specifically delivered to the subcellular organelle is still an attractive and challenging work.
View Article and Find Full Text PDFA series of gallium(III) amide corroles including meso-5,15-bis(pentafluorophenyl)-10-(4-Pyridinamide-phenyl)corrole gallium (III) (1-Ga), meso-5,15-bis(pentafluorophenyl)-10-(4-Furamide-phenyl)corrole gallium(III) (2-Ga) and meso-5,15-bis(pentafluorophenyl)-10-(4-Thiophenamide-phenyl)corrole gallium(III) (3-Ga) were synthesized. The interaction of these complexes with DNA and their photodynamic antitumor activities have been studied. UV spectra titration showed that these gallium(III) corroles interact with calf thymus DNA (CT-DNA) through an external binding mode.
View Article and Find Full Text PDFTwo new trimethoxyl AB triaryl corroles 10-(2,4,6-trimethoxyphenyl)-5,15-bis(pentafluorophenyl)- corrole (1) and 10-(3,4,5-trimethoxyphenyl)-5,15-bis(pentafluorophenyl)-corrole (2) and their gallium(III) and phosphorus(V) (1-Ga, 1-P, 2-Ga and 2-P) complexes had been prepared and well characterized by UV-vis, NMR and HR-MS. Among all compounds, 2-Ga, 1-P and 2-P showed excellent in vivo photodynamic activity against the MDA-MB-231, A549, Hela and HepG2 cell lines upon light irradiation at 625 nm. And 2-P even exhibited higher phototoxicity than the clinical photosensitizer temoporfin.
View Article and Find Full Text PDFThis work reports the preparation and characterization of an A B corrole 5,15-bis(perfluorophenyl)-10-(4-carboxyphenyl)corrole and its gallium(III) and phosphorus(V) complexes. Their in-vitro photodynamic anticancer activities against A549, MDA-MB-231, B16, HepG2, and Hela cell lines were also investigated. Among three compounds, phosphorus(V) complexexhibits the best photostability, highest fluorescence quantum yields (Φ =0.
View Article and Find Full Text PDFFibrosis is an excessive accumulation of the extracellular matrix within solid organs in response to injury and a common pathway that leads functional failure. No clinically approved agent is available to reverse or even prevent this process. Herein, we report a nanotechnology-based approach that utilizes a drug carrier to deliver a therapeutic cargo specifically to fibrotic kidneys, thereby improving the antifibrotic effect of the drug and reducing systemic toxicity.
View Article and Find Full Text PDFObjective: Stromal barriers, such as the abundant desmoplastic stroma that is characteristic of pancreatic ductal adenocarcinoma (PDAC), can block the delivery and decrease the tumour-penetrating ability of therapeutics such as tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), which can selectively induce cancer cell apoptosis. This study aimed to develop a TRAIL-based nanotherapy that not only eliminated the extracellular matrix barrier to increase TRAIL delivery into tumours but also blocked antiapoptotic mechanisms to overcome TRAIL resistance in PDAC.
Design: Nitric oxide (NO) plays a role in preventing tissue desmoplasia and could thus be delivered to disrupt the stromal barrier and improve TRAIL delivery in PDAC.
A series of halogenated gallium corroles were synthesized and characterized by UV-vis, HRMS, NMR, and FT-IR. The interaction between these gallium corroles and calf thymus DNA had been investigated by spectroscopic methods. These gallium corroles would interact with CT-DNA via an outside binding mode.
View Article and Find Full Text PDFThree mono-hydroxy corroles 1-3 and their gallium(III) complexes Ga1-3 were synthesized, and their photodynamic antitumour activities towards breast cancer cells were investigated. All corroles showed excellent cytotoxicity against the MDA-MB-231 and 4T1 cell lines upon light irradiation at 625 nm. Ga3 exhibited excellent phototoxicity and selectivity against MDA-MB-231 cells, with an IC of 0.
View Article and Find Full Text PDFA series of iron(III), manganese(III) and copper(III) mono-hydroxyl corrole complexes had been prepared and well characterized by UV-vis, H NMR, F NMR and HR-MS. These metallocorroles may bind to CT-DNA through external binding mode. Metallocorrole Fe-2c exhibited significant phototoxicity and low toxicity toward A549 tumor cells.
View Article and Find Full Text PDFOn the basis of the reported amino acid sequence of alpha-bungarotoxin (alpha-BGT), DNA sequence of alpha-BGT was deduced and fourteen partially complementary oligonucleotides were designed and synthesized. A plasmid carrying the coding region of alpha-BGT was obtained by primer extension, PCR and ligation with pMD-18-T. The target fragment was digested with Xba I and EcoR I, recovered and ligated with pET28a(+).
View Article and Find Full Text PDF