Publications by authors named "Yu-Huan Lu"

The characteristics of global prevalence and high recurrence of bladder cancer has led numerous efforts to develop new treatments. The spontaneous voiding and degradation of the chemodrug hamper the efficacy and effectiveness of intravesical chemotherapy following tumor resection. Herein, the externally thiolated hollow mesoporous silica nanoparticles (MSN-SH(E)) is fabricated to serve as a platform for improved bladder intravesical therapy.

View Article and Find Full Text PDF

The O activation and CO oxidation on nitrogen-doped C N fullerene are investigated using first-principles calculations. The calculations indicate that the C N fullerene is able to activate O molecules resulting in the formation of superoxide species ( O2-) both kinetically and thermodynamically. The active superoxide can further react with CO to form CO via the Eley-Rideal mechanism by passing a stepwise reaction barrier of only 0.

View Article and Find Full Text PDF

We elucidate the possibility of nitrogen-doped carbon nanotube as a robust catalyst for CO oxidation. We have performed first-principles calculations considering the spin-polarization effect to demonstrate the reaction of CO oxidation catalyzed by the nitrogen-doped carbon nanotube. The calculations show that O2 species can be partially reduced with charge transfer from the nitrogen-doped carbon nanotube and directly chemisorbed on the C-N sites of the nitrogen-doped carbon nanotube.

View Article and Find Full Text PDF

A positive myocardial inotropic effect achieved using HNO/NO(-) , compared with NO⋅, triggered attempts to explore novel nitroxyl donors for use in clinical applications in vascular and myocardial pharmacology. To develop M-NO complexes for nitroxyl chemistry and biology, modulation of direct nitroxyl-transfer reactivity of dinitrosyl iron complexes (DNICs) is investigated in this study using a Fe(III) -porphyrin complex and proteins as a specific probe. Stable dinuclear {Fe(NO)2 }(9) DNIC [Fe(μ-(Me) Pyr)(NO)2 ]2 was discovered as a potent nitroxyl donor for nitroxylation of Fe(III) -heme centers through an associative mechanism.

View Article and Find Full Text PDF

The mechanisms for H2O adsorption on γ-Al2O3(110) surface were investigated to illustrate the influence of oxide modifiers on the hydrogen generation reaction. Periodic density functional theory (DFT) calculations with the projected augmented wave (PAW) approach were carried out to study the adsorption of H2O, OH, O and H species, as well as the reaction mechanisms of H2O splitting and H2 generation. Their corresponding structures and adsorption energies are also reported.

View Article and Find Full Text PDF

The mechanisms of radical-molecule reactions between HCO (formyl radical) and O3 (ozone) have been investigated by using BH&HLYP and QCISD methods with the 6-311++G(3df,2p) basis set. The energetics have been refined with CCSD(T) and QCISD(T) theoretical approaches with the same basis set based on the geometries calculated at the QCISD method. The intermediates of hydrogen-bonded complexes and the critical transition states are also examined with the multireference methods.

View Article and Find Full Text PDF

We carried out a computational study of radical reactions of RNCN (R = H, F, Cl, Br, CH(3)) + NO to investigate how the substitution can influence their corresponding energy barriers and rate coefficients. The preferable reactive sites of RNCN radicals with various substituents are calculated by employing the Fukui functions and hard-and-soft acid-and-base theory, which were generally proved to be successful in the prediction and interpretation of regioselectivity in various types of electrophilic and nucleophilic reactions. Our calculated results clearly show that if the substituted RNCN radical has electron-donating substituent (for R = CH(3)), its corresponding barrier heights for transition states will be substantially decreased.

View Article and Find Full Text PDF