Publications by authors named "Yu-Hua Zhong"

A microanalytical technique based on the photothermal effect in conjunction with back-scattering interferometry (BSI) using a single laser beam was developed for quantitative detection of heavy metals. After the chromogenic reaction of an analyte in a capillary tube, the photothermal effect induced by irradiation with the same laser beam leads to a change of the refractive index of the solution, which can be "quantified" using the BSI technique. For prove-of-concept, Cu(II) was chosen as the trial analyte, for which the solution changes to purplish through reacting with the chromogenic reagent; a single laser beam of 532 nm was adapted for both inducing the photothermal effect and realizing BSI detection.

View Article and Find Full Text PDF

We have systematically investigated and found surprising superior catalytic activities of very short DNAzymes for copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC), both in solution and on surface. As a key reaction of the "click chemistry" class, CuAAC is a highly efficient and specific covalent conjugation tool with demonstrated applications in organic synthesis, bioconjugation, and surface functionalization; however, it requires the presence of the Cu(I) catalyst, which is an unstable species in aqueous solutions. We show here that one ultrashort, 14-nucleotide-truncated fragment of an earlier selected DNAzyme (CLICK-17) shows a striking and superior catalytic activity toward the CuAAC reaction in solution and on surface in the presence of either Cu(I) or Cu(II), at significantly lowered concentrations.

View Article and Find Full Text PDF

Commercial pH paper is a quick and simple tool for measuring a solution's acidity/basicity, but it only provides qualitative or semi-quantitative results, and the synthetic indicator dyes within can be toxic or carcinogenic. Although pH meters enable more accurate and quantitative analysis, they are less convenient to operate and are tedious to calibrate. This presents a need for an alternative pH testing method for applications where it is not easy or possible to use a pH meter, yet quantitative results are desired.

View Article and Find Full Text PDF
Article Synopsis
  • The text indicates that there is a correction to a previously published article.
  • The reference number provided is DOI: 10.1039/D3RA00802A, which helps locate the original article easily.
  • This correction may involve updates or changes that impact the findings or conclusions of the original research.
View Article and Find Full Text PDF

Camptothecin (CPT) and cisplatin (Pt) have shown synergistic effects on a variety of cancers during preclinical and clinical studies. However, the ratio of the two drugs often could not be precisely regulated in different delivery systems, which hinders the desired synergistic effect. In addition, the low delivery efficiency of the two drugs to the tumor further impedes the ideal therapeutic outcomes.

View Article and Find Full Text PDF

Thunb. has attracted much attention for its treatment of bacterial and viral infectious diseases, while its active ingredients and potential mechanisms of action have not been fully elucidated. Here, we combined metabolomics, and network pharmacology to explore the molecular mechanism of ATCC14579 inhibition by Thunb.

View Article and Find Full Text PDF

Herein, a smartphone-based portable reader with integrated optics for standard microtiter plates (96 wells) has been designed and demonstrated for high-throughput quantitation of validated biomarkers in serum. The customized optical attachment was simply constructed with a convex lens and a light source, by which the transmitted light through a 96-well microtiter plate was converged for imaging with a smartphone, so that accurate and wide-range reading of the plate can be achieved. More importantly, relying on the digitized colorimetric analysis of the obtained images, concentrations of various biomarkers can be determined directly using the customized mobile app.

View Article and Find Full Text PDF

The determination of pH values is essential in many chemical, medical, and environmental monitoring processes, which has been relying on conventional pH meters (glass electrodes) for quantitation and pH test strips for qualitative (or semi-quantitative) assessment. In this work, we demonstrate a smartphone-based pH determination technique, which performs digital image analysis of commercial test strips, particularly the determination of either the dominant wavelength (λ) or complementary wavelength (λ) of the color image. In conjunction with a 3D-printed optical accessory (with a surface light source and a macro lens), the quality of captured images have been warranted, and the quantitation accuracy of 0.

View Article and Find Full Text PDF

Modern smartphone-based sensing devices are generally standalone detection platforms that can transduce signals (via the built-in USB port, audio jack, or camera), perform analysis through mobile applications (apps), and display results on the screen/user interface. The advancement toward this ultimate form of on-site chemical analysis and point-of-care diagnosis is tied closely with the evolution of mobile technology. Previous reviews in the field mainly focused on the physical platforms while overlooking the role of mobile apps in such devices.

View Article and Find Full Text PDF

Background: Repetitive transcranial magnetic stimulation (rTMS) has been proposed as a promising therapeutic intervention for neurological disorders. However, the precise mechanisms of rTMS in neural excitability remains poorly understood. Estradiol is known to have strong influence on cortical excitability.

View Article and Find Full Text PDF

Anthocyanins are antioxidant and anti-inflammatory ingredients in various fruit beverages, for which their conservation and quantitation are important for the food industry. In this paper, we report a simple, portable device for accurate on-site determination of total monomeric anthocyanins in fruit beverages employing a Wi-Fi scanner coupled with a flexible microchip and a free mobile app. The detection principle is based on the pH-induced colorimetric reactions of anthocyanins performed in a specially designed microchip and validated with standard spectrophotometric measurements.

View Article and Find Full Text PDF

Herein we report a quantitative, multiplex assay for disease markers in plasma based on an integrated setup of a portable scanner and a disposable paper-based analytical device (PAD). The quantitative analysis relies on the digital colorimetric reading of the three-layer PAD with 30 assay sites for performing respective chromogenic reactions for plasma uric acid, glucose, and triglyceride, which are considered as important risk factors for cardiovascular diseases. A portable scanner with WiFi transmission capability was used to produce high-quality color images of the PADs and wirelessly transfer them to a smartphone or other mobile devices for data processing.

View Article and Find Full Text PDF

We report a new DNA nanostructure, an extended 1-dimensional composite built for the first time out of structurally robust yet conveniently disassembled DNA triple helices, interspersed with short stretches of G-quadruplexes. These "TQ Hybrid" 1-dimensional nanostructures require potassium ions and modestly acidic pH for their formation and are easily disassembled by changes to either of these requirements. We initially prepared and characterized a "monomeric" TQ Hybrid tile; followed by "sticky" TQs tiles, incorporating unique guanine-only sticky ends, that enable efficient self-assembly via G-quartet formation of nanostructures >150 nm in length, as seen with atomic force microscopy and transmission electron microscopy.

View Article and Find Full Text PDF

Superhydrophobic coatings have tremendous potential for applications in different fields and have been achieved commonly by increasing nanoscale roughness and lowering surface tension. Limited by the availability of either ideal nano-structural templates or simple fabrication procedures, the search of superhydrophobic coatings that are easy to manufacture and are robust in real-life applications remains challenging for both academia and industry. Herein, we report an unconventional protocol based on a single-step, stoichiometrically controlled reaction of long-chain organosilanes with water, which creates micro- to nano-scale hierarchical siloxane aggregates dispersible in industrial solvents (as the coating mixture).

View Article and Find Full Text PDF

The design and testing of integrated colorimetric microarray immunochips (immuno-microarrays) are reported for the quantitation and direct visual determination of multiple illicit drugs (e.g., morphine, cocaine and amphetamine) in body fluids.

View Article and Find Full Text PDF

To enable the optimal, biocompatible and non-destructive application of the highly useful copper (Cu+)-mediated alkyne-azide 'click' cycloaddition in water, we have isolated and characterized a 79-nucleotide DNA enzyme or DNAzyme, 'CLICK-17', that harnesses as low as sub-micromolar Cu+; or, surprisingly, Cu2+ (without added reductants such as ascorbate) to catalyze conjugation between a variety of alkyne and azide substrates, including small molecules, proteins and nucleic acids. CLICK-17's Cu+ catalysis is orders of magnitude faster than that of either Cu+ alone or of Cu+ complexed to PERMUT-17, a sequence-permuted DNA isomer of CLICK-17. With the less toxic Cu2+, CLICK-17 attains rates comparable to Cu+, under conditions where both Cu2+ alone and Cu2+ complexed with a classic accelerating ligand, THPTA, are wholly inactive.

View Article and Find Full Text PDF

DNA self-assembled monolayers (SAMs) were prepared using potential-assisted deposition on clean gold single-crystal bead electrodes under a number of conditions (constant or square-wave potential perturbations in TRIS or phosphate immobilization buffers with and without Cl). The local environment around the fluorophore-labeled DNA tethered to the electrode surface was characterized using in situ fluorescence microscopy during electrochemical measurements as a function of the underlying surface crystallography. Potential-assisted deposition from a TRIS buffer containing Cl created DNA SAMs that were uniformly distributed on the surface with little preference to the underlying crystallography.

View Article and Find Full Text PDF

As the performance of hairpin DNA (hpDNA)-based biosensors is highly dependent on the yield of stem-loop (hairpin) conformations, we report herein a versatile fluorometric in situ hybridization protocol for examining hpDNA self-assembled monolayers (SAMs) on popularly used biochip substrates. Specifically, the ratio of fluorescence (FL) intensities of hpDNA SAMs (in an array format) before and after hybridization was adopted as the key parameter for performing such a determination. Upon confirming the existence of mixed and tunable DNA conformations in binary deposition solutions and efficient hybridization of the hairpin strands with the target DNA via gel electrophoresis assays, we tested the fluorometric protocol for determining the coverages of hpDNA in hpDNA/ssDNA SAMs prepared on gold; its accuracy was validated by Exonuclease I (Exo I)-assisted electrochemical quantitation.

View Article and Find Full Text PDF

We report herein a Blu-ray disc technology enabled immunoassay (namely, assay-on-a-Blu-ray) protocol for the quantitation of food toxins. In particular, commercial Blu-ray discs (BDs) are activated as substrates to create indirect competitive immunoassays with the aid of microfluidic channel plates for the quantitation of aflatoxins; an unmodified Blu-ray drive is employed to read the digitized signal (error counts generated from gold/silver-particle-enhanced binding sites); and a free disc-quality control software is adapted to process the raw data. The performance of this BD-based digital detection platform has been tested for the quantitation of aflatoxin B1 (AFB1) in spiked corn samples and validated with standard high-performance liquid chromatography measurements.

View Article and Find Full Text PDF

In terms of how the signal varies in response to increased concentration of an analyte, sensors can be classified as either "signal-on" or "signal-off" format. While both types hold potentials to be sensitive, selective, and reusable, in many situations "signal-on" sensors are preferred for their low background signal and better selectivity. In this study, with the detection of lysozyme using its DNA aptamer as a trial system, for the first time we demonstrated that such an aptamer-based electrochemical biosensor can be converted from intrinsically "signal-off" to "signal-on" with the aid of a DNA exonuclease.

View Article and Find Full Text PDF

We have discovered herein that commonly used laboratory glass microfiber filters can be functionalized as background-free superhydrophobic substrates for quantitative fluorometric assays. In particular, glass microfiber filters (Whatman GF/A) can be treated with low-concentration (20 mM) methyltrichlorosilane/toluene solution to be superhydrophobic (water contact angle >150°) in less than 5 min; the modified glass microfiber filter can be readily patterned with UV/ozone irradiation to create hydrophilic reaction zones on the otherwise superhydrophobic substrate. Compared with traditional cellulose filter paper, the glass microfiber filter has extremely low fluorescence background, which makes it an excellent substrate for preparing quantitative fluorometric assays.

View Article and Find Full Text PDF

Herein, we describe a benchtop protocol to create superhydrophobic polydimethylsiloxane (PDMS) via nanocontact molding of polycarbonate (PC) that was crystallized by controlled solvent treatment. The crystallized PC chains rearrange into a network of spherulites (spherical semicrystalline domains); the overall surface is rough on the micrometer-scale, while the spherulites themselves consist of nanoscale features. It was confirmed via conventional spectroscopic and high-resolution microscopic investigation that such hierarchical roughness is key to the development of superhydrophobic PC and the substantial enhancement upon PDMS molding.

View Article and Find Full Text PDF

The macrocyclic cucurbit[7]uril (CB[7]) host has exhibited great application potential as a pharmaceutical excipient due to its versatile abilities to modulate the chemical/physical properties of drug molecules (guests) and to control their in vivo delivery and release (upon complexation). The formation of stable CB[7]@drug complexes is the prerequisite for these promising applications; we report herein a general assay strategy to quantitate the complexation based on competitive binding with surface-immobilized redox guests in conjunction with conventional electrochemical techniques (e.g.

View Article and Find Full Text PDF

Blu-ray discs (BDs) are advantageous in comparison with other optical discs (compact discs and digital versatile discs) in terms of not only their storage capacity but also the high-quality materials fabricated from. We have recently discovered that the "Hard Coat" film of Verbatim BDs is in fact a unique type of polymeric substrates that can be readily activated and adapted for biochip fabrications. Particularly, the Hard Coat film peeled from BDs is optically transparent without any fluorescence background, which can be activated by treating with a common base (1.

View Article and Find Full Text PDF

Nowadays quantitative chemical analysis is usually costly, instrument-dependent, and time-consuming, which limits its implementation for remote locations and resource-limited regions. Inspired by the ancient papercutting art (), we herein introduce a novel cut-and-paste protocol to fabricate 3D microfluidic paper-based analytical devices (μPADs) that are suitable for on-site quantitative assay applications. The preparation of the device is fast, simple, and independent of any lithographic devices or masks.

View Article and Find Full Text PDF