Publications by authors named "Yu-Hua Chow"

A polymorphism causing deficiencies in Toll-interacting protein (TOLLIP), an inhibitory adaptor protein affecting endosomal trafficking, is associated with increased tuberculosis (TB) risk. It is, however, unclear how TOLLIP affects TB pathogenesis. Here we show that TB severity is increased in Tollip mice, characterized by macrophage- and T cell-driven inflammation, foam cell formation and lipid accumulation.

View Article and Find Full Text PDF

Variations in the Toll-interacting protein (TOLLIP) gene have been identified in genome-wide association studies to correlate with risk of disease, mortality, and response to N-acetylcysteine therapy in idiopathic pulmonary fibrosis. Although TOLLIP is known to modulate innate immune responses, its relevance in organ fibrogenesis remains unknown. Prior work in the literature suggests TOLLIP dampens transforming growth factor beta (TGFβ) signaling in human cell lines.

View Article and Find Full Text PDF
Article Synopsis
  • Innate immune cell populations play a vital role in asthma, with unique functions depending on their location in the body, prompting research on their distribution in mouse models.
  • This study used intravascular (IV) labeling to differentiate between innate immune cells in the bloodstream and those in lung tissue or airway fluid in two asthma models.
  • Results showed that IV labeled leukocytes did not interfere with bronchoalveolar lavage analysis, and excluding them improved the assessment accuracy of myeloid cells in lung tissue, enhancing understanding of immune cell movement in asthma.
View Article and Find Full Text PDF

We previously showed that pericyte-like cells derived from the FoxD1-lineage contribute to myofibroblasts following bleomycin-induced lung injury. However, their functional significance in lung fibrosis remains unknown. In this study, we used a model of lung pericyte-like cell ablation to test the hypothesis that pericyte-like cell ablation attenuates lung fibrosis in bleomycin-induced lung injury.

View Article and Find Full Text PDF

We have previously reported that the 26-amino acid N-terminus stalk region of soluble Fas ligand (sFasL), which is separate from its binding site, is required for its biological function. Here we investigate the mechanisms that link the structure of the sFasL stalk region with its function. Using site-directed mutagenesis we cloned a mutant form of sFasL in which all the charged amino acids of the stalk region were changed to neutral alanines (mut-sFasL).

View Article and Find Full Text PDF

We previously reported on the role of pericyte-like cells as functional sentinel immune cells in lung injury. However, much about the biological role of pericytes in lung injury remains unknown. Lung pericyte-like cells are well-positioned to sense disruption to the epithelial barrier and coordinate local inflammatory responses due to their anatomic niche within the alveoli.

View Article and Find Full Text PDF

Background: Integrin α8 (ITGA8) heterodimerizes with integrin β1 and is highly expressed in stromal cells of the lung. Platelet-derived growth factor receptor beta (PDGFRβ+) cells constitute a major population of contractile myofibroblasts in the lung following bleomycin-induced fibrosis. Integrin α8β1 is upregulated in fibrotic foci in bleomycin-induced lung injury.

View Article and Find Full Text PDF

We demonstrated previously that FoxD1-derived cells in the lung are enriched in pericyte-like cells in mouse lung. These cells express the common pericyte markers and are located adjacent to endothelial cells. In this study, we demonstrate the feasibility of administering diphtheria toxin (DT) by oropharyngeal aspiration as an approach to ablating FoxD1-derived cells.

View Article and Find Full Text PDF

Optimal skin wound healing relies on tight balance between collagen synthesis and degradation in new tissue formation and remodeling phases. The endocytic receptor uPARAP regulates collagen uptake and intracellular degradation. In this study we examined cutaneous wound repair response of uPARAP null (uPARAP-/-) mice.

View Article and Find Full Text PDF

The lung is an important reservoir of human immunodeficiency virus (HIV). Individuals infected with HIV are more prone to pulmonary infections and chronic lung disorders. We hypothesized that comprehensively profiling the proteomic landscape of bronchoalveolar lavage fluid (BALF) in patients with HIV would provide insights into how this virus alters the lung milieu and contributes to pathogenesis of HIV-related lung diseases.

View Article and Find Full Text PDF

Rationale: The origin of cells that make pathologic fibrillar collagen matrix in lung disease has been controversial. Recent studies suggest mesenchymal cells may contribute directly to fibrosis.

Objectives: To characterize discrete populations of mesenchymal cells in the normal mouse lung and to map their fate after bleomycin-induced lung injury.

View Article and Find Full Text PDF

Rationale: Ventilator-associated pneumonia (VAP) is a common complication in patients with acute lung injury (ALI) and can lead to increased morbidity and mortality. Identifying protein profiles specific to VAP in bronchoalveolar lavage fluid (BALF) may aid in earlier diagnosis, elucidate mechanisms of disease, and identify putative targets for therapeutic intervention.

Methods: BALF was obtained from 5 normal subjects and 30 ALI patients: 14 with VAP (VAP(+)) and 16 without VAP (VAP(-)).

View Article and Find Full Text PDF

Targeting cell populations via endogenous carbohydrate receptors is an appealing approach for drug delivery. However, to be effective, this strategy requires the production of high affinity carbohydrate ligands capable of engaging with specific cell-surface lectins. To develop materials that exhibit high affinity towards these receptors, we synthesized glycopolymers displaying pendent carbohydrate moieties from carbohydrate-functionalized monomer precursors via reversible addition-fragmentation chain transfer (RAFT) polymerization.

View Article and Find Full Text PDF

Insulin-like growth factor (IGF)-1 is increased in different models of acute lung injury, and is an important determinant of survival and proliferation in many cells. We previously demonstrated that treatment of mice with IGF-1 receptor-blocking antibody (A12) improved early survival in bleomycin-induced lung injury. We have now examined whether administration of A12 improved markers of lung injury in hyperoxia model of lung injury.

View Article and Find Full Text PDF

We recently reported a novel adhesion pathway in lymphocytes that is mediated by cyclin-dependent kinase (Cdk) 4 activity and mediates lymphocyte interactions with endothelial matrix. We now demonstrate that HIV-infected lymphocytes also use Cdk4 to mediate spontaneous adhesion to fibronectin and endothelial matrix. We further demonstrate that HIV-infected lymphocytes require Rap-1 activity for phorbol-stimulated adhesion.

View Article and Find Full Text PDF

Urokinase plasminogen activator receptor-associated protein (uPARAP, or Endo180) is a transmembrane endocytic receptor that mediates collagen internalization and degradation. uPARAP may be a novel pathway for collagen turnover and matrix remodeling in the lung. The function of uPARAP in lung injury has not been described.

View Article and Find Full Text PDF

We recently described a new adhesion pathway in lymphocytes that is dependent on Cyclin-dependent kinase (Cdk) 4 activity and mediates lymphocyte interactions with endothelial matrix. We showed that Cdk4(-/-) mice had impaired recruitment of lymphocytes following bleomycin model of acute lung injury. In this study, we characterized the development and function of hematopoietic cells in Cdk4(-/-) mice and assessed the response of Cdk4(-/-) mice to allergen challenge.

View Article and Find Full Text PDF

Background: The cationic lipid Genzyme lipid (GL) 67 is the current "gold-standard" for in vivo lung gene transfer. Here, we assessed, if GL67 mediated uptake of siRNAs and asODNs into airway epithelium in vivo.

Methods: Anti-lacZ and ENaC (epithelial sodium channel) siRNA and asODN were complexed to GL67 and administered to the mouse airway epithelium in vivo Transfection efficiency and efficacy were assessed using real-time RT-PCR as well as through protein expression and functional studies.

View Article and Find Full Text PDF

We developed a helper-dependent adenoviral vector for cystic fibrosis lung gene therapy. The vector expresses cystic fibrosis transmembrane conductance regulator (Cftr) using control elements from cytokeratin 18. The vector expressed properly localized CFTR in cultured cells and in the airway epithelia of mice.

View Article and Find Full Text PDF

Clara cell 10 kD protein (CC10) is expressed specifically in a portion of nonciliated airway epithelial cells. The molecular mechanisms that determine its high specificity are not clear. Transcription factors implicated in the regulation of CC10 in rodents do not show the same level of cell specificity.

View Article and Find Full Text PDF