Zeolites are microporous crystalline materials widely used in catalysis and adsorption applications. The fabrication of zeolite thin films and membranes has also opened up the possibility of using zeolites in electronic devices and membrane separations. The existing approach to growing zeolite films involves exposing the substrate to a high-pH environment; however, this process is applicable to only specific types of substrates.
View Article and Find Full Text PDFThree new isostructural metal-organic frameworks (MOFs), [V(OH)(NDC)] (), [Cr(OH)(NDC)] (), and [Ga(OH)(NDC)] () have been synthesized hydrothermally using 1,4-naphthalene dicarboxylate (NDC) as the linker. These MOFs (, and ) have been used as a template for the synthesis of metal-oxide-inserted nanoporous carbon materials. The newly synthesized MOFs and the resulting porous carbon hybrid functional materials have been characterized using powder x-ray diffraction, scanning electron microscopy, transmission electron microscopy, and energy dispersive x-ray spectroscopic analysis.
View Article and Find Full Text PDFIn our novel green approach, the waste polyethylene terephthalate (PET) bottle material has effectively been used as the starting precursor instead of terephthalic acid for the synthesis of five terephthalate based nanoporous trivalent metal-organic frameworks (MOFs) namely MIL-47, MIL-53(Cr), MIL-53(Al), MIL-53(Ga), and MIL-101(Cr). The optimum reaction parameters to achieve the green synthesis were studied. These MOFs were structurally identified by using powder X-ray diffraction (PXRD) measurements.
View Article and Find Full Text PDFThree isostructural metal-organic frameworks, (MOFs), [Fe(OH)(1,4-NDC)] (1), [Al(OH)(1,4-NDC)] (2), and [In(OH)(1,4-NDC)] (3) have been synthesized hydrothermally by using 1,4-naphthalene dicarboxylate (1,4-NDC) as a linker. The MOFs were characterized using various techniques and further used as precursor materials for the synthesis of metal/metal oxide nanoparticles inserted in a carbon matrix through a simple thermal conversion method. The newly synthesized carbon materials were characterized by scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy analysis, powder X-ray diffraction and BET analysis.
View Article and Find Full Text PDF